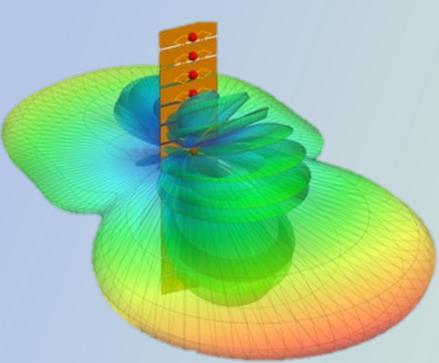

Pseudospectral Time-Domain Method in EM Simulations

Speaker: Jake W. Liu


Outline

- Basics of Computational Electromagnetics
- Recap of FDTD
- Introduction to PSTD
- Advanced topics in PSTD

Numerical Simulations in EM

What are the applications?

Some Applications

- Antenna radiation modeling
- Device modeling (SIPI / EMC)
- Metamaterials and nanostructures
- Wave propagation and scattering

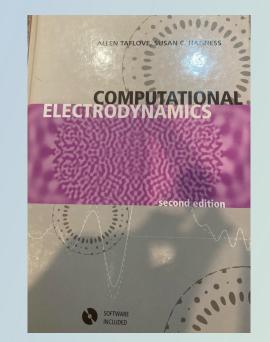
Based on the application requirements, we select an appropriate computational electromagnetics (CEM) method for modeling.

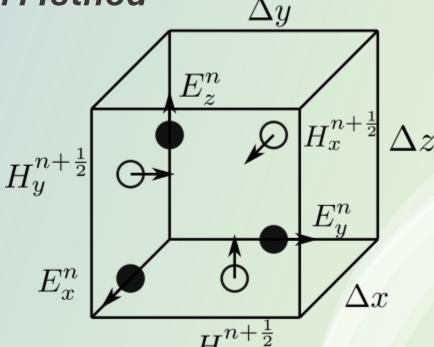
$\overline{\mathbf{i}}$	IE	DE
TD	$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int \mathbf{B} \cdot d\mathbf{s}$ $\oint \mathbf{H} \cdot d\mathbf{l} = \int (\mathbf{J} + \frac{d}{dt} \mathbf{D}) \cdot d\mathbf{s}$ $\oint \mathbf{D} \cdot d\mathbf{s} = \int q dv$ $\oint \mathbf{D} \cdot d\mathbf{s} = 0$	$\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$ $\nabla \times \mathbf{H} = \mathbf{J} + \partial \mathbf{D}/\partial t$ $\nabla \cdot \mathbf{D} = q$ $\nabla \cdot \mathbf{B} = 0$
FD	$\oint \mathbf{E} \cdot d\mathbf{l} = -i\omega \int \mathbf{B} \cdot d\mathbf{s}$ $\oint \mathbf{H} \cdot d\mathbf{l} = \int (\mathbf{J} + i\omega \mathbf{D}) \cdot d\mathbf{s}$ $\oint \mathbf{D} \cdot d\mathbf{s} = \int q dv$ $\oint \mathbf{D} \cdot d\mathbf{s} = 0$	$\nabla \times \mathbf{E} = -i\omega \mathbf{B}$ $\nabla \times \mathbf{H} = \mathbf{J} + i\omega \mathbf{D}$ $\nabla \cdot \mathbf{D} = q$ $\nabla \cdot \mathbf{B} = 0$

Computational Electromagnetics

Well known numerical methods are listed

	IE	DE
TD	TDIE	FDTD
FD	МОМ	FEM

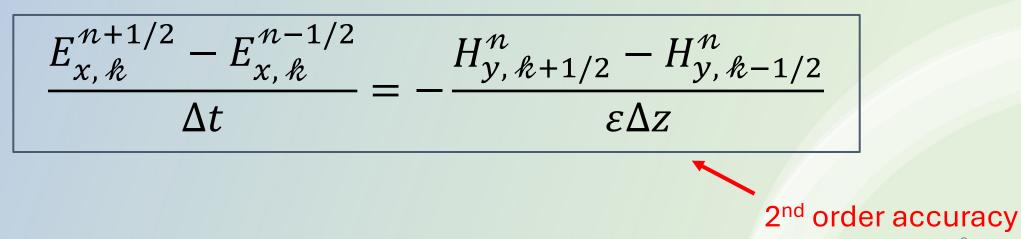

These are called full-wave methods


Asymptotic Methods

- Asymptotic methods can be applied for the electrically-large cases:
- \Rightarrow Geometrical optics (GO)
- \Rightarrow Physical Optics (PO)
- And their advanced version:
- ⇒ Geometrical Theory of Diffraction (GTD)
- ⇒ Physical Theory of Diffraction (PTD)

Finite-Difference Time-Domain Method

- Kane Yee, 1966, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media"
- Allen Taflove, 1995, Computational Electrodynamics: The Finite-Difference Time-Domain Method



This is my 2nd edition. I got my 3rd edition recently

FDTD Formulation

- Discretization in time => FD
- Discretization in space => FD

Topics in FDTD

- Discretization
- Material
- Perfectly Matching Layer (PML)
- Hard Source / Soft Source
- Pure Scattered-Field (SF) / Total-Field Scattered-Field (TFSF)
- Near-to-Far Field Transformation (NTFF)

Pseudospectral Time-Domain Method

- Q. H. Liu, 1997, "The PSTD algorithm: A time-domain method requiring only two cells per wavelength"
- Discretization in time => FD
- Discretization in space => PS
 - using global basis function to approximate differential operations
 - Fourier => uniform collocated points
 - Multi-domain => non-uniform collocated points

Fourier PSTD Formulation

Denoting the Fourier transform operator as

$$\Psi(\mathbf{k}) = \mathfrak{F}_{\eta}(\psi) = \int_{-\infty}^{\infty} \psi(\mathbf{r}) e^{-ik_{\eta}\eta} d\eta$$
$$\psi(\mathbf{r}) = \mathfrak{F}_{\eta}^{-1}(\Psi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Psi(\mathbf{k}) e^{ik_{\eta}\eta} dk_{\eta}$$

• Then

$$\partial_{\eta} \psi = \partial_{\eta} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} \Psi(\mathbf{k}) e^{ik_{\eta}\eta} dk_{\eta} \right] = \frac{ik_{\eta}}{2\pi} \int_{-\infty}^{\infty} \Psi(\mathbf{k}) e^{ik_{\eta}\eta} dk_{\eta} = \mathfrak{F}_{\eta}^{-1} (ik_{\eta} \Psi) = \mathfrak{F}_{\eta}^{-1} [ik_{\eta} \mathfrak{F}_{\eta}(\psi)]$$

$$\frac{E_{x,k}^{n+1/2} - E_{x,k}^{n-1/2}}{\Delta t} = -\frac{1}{\varepsilon} \mathfrak{F}_z^{-1} [ik_z \mathfrak{F}_z (H_y^n)]|_k$$

Implementation of PSTD

- FFT can be applied to compute the derivatives.
- Be aware of the use of fftshift/ifftshift if k vector is defined as zero-centered.
- To avoid numerical errors, taking the real part of the computed result is necessary!

Advantages and Disadvantages of PSTD

Advantages

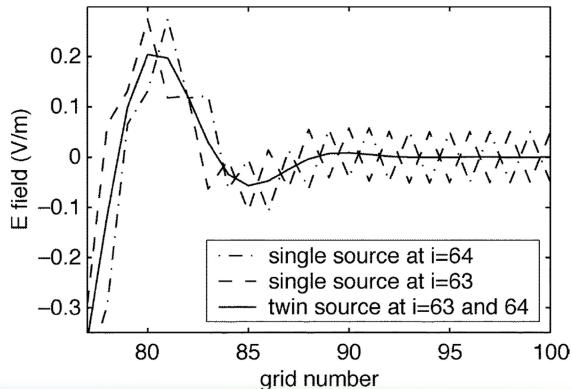
- Requires only two cells per wavelength according to Nyquist theorem (theoretically speaking...)
- Computations for E and H fields are collocated*

Disadvantages

- Difficult to deal with field discontinuities
 - →Source
 - → TFSF formulation
 - → Metallic surfaces
 - → High-contrast dielectrics

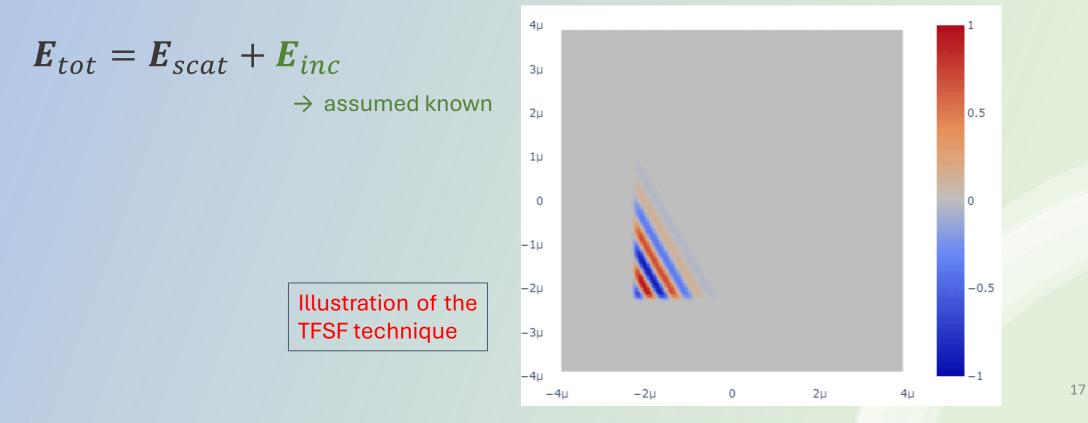
Topics in PSTD (vs. FDTD)

- Discretization
- Material
- Perfectly Matching Layer (PML)
- Hard Source / Soft Source
- Pure Scattered-Field / Total-Field Scattered-Field (TFSF)
- Near-to-Far Field Transformation (NTFF)

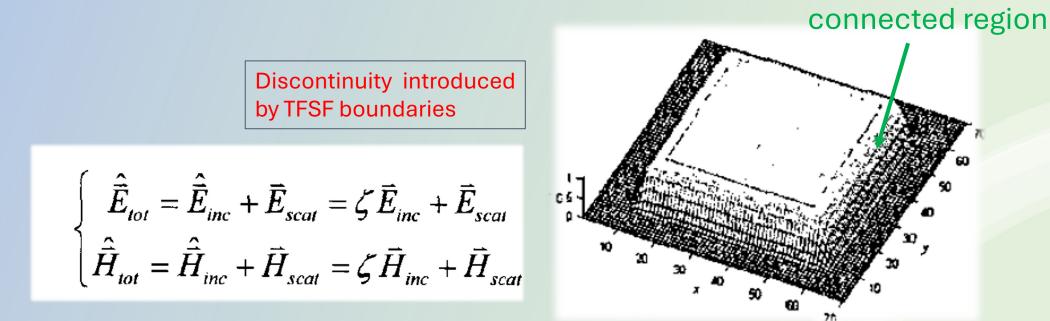

How does the topic differ from that of FDTD?

- Few
- Medium
- High

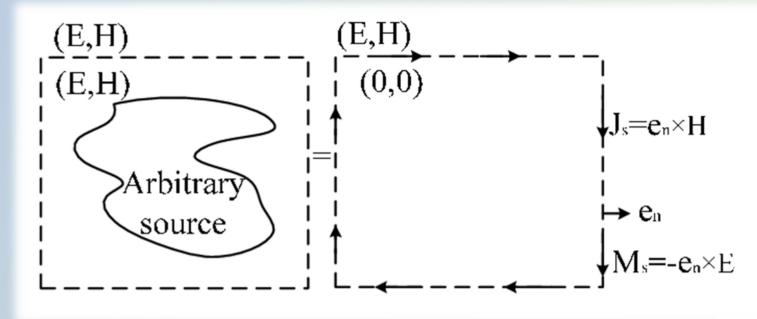
Compact Wave Source Condition


 Tae-Woo Lee and Susan C. Hagness, 2004, "A Compact Wave Source Condition for the Pseudospectral Time-Domain Method"

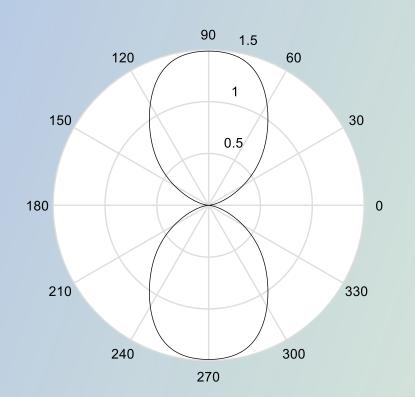
Discontinuity introduced by point sources

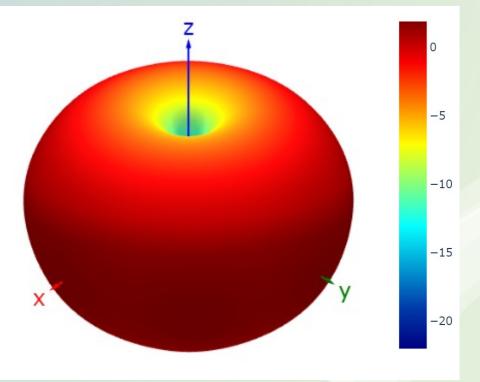

SF / TFSF Formulation

- SF / TFSF are techniques to introduce plane wave into the space
- Decompose the total field into incident field and scattered field as


TFSF Formulation in PSTD

 Xiang Gao, Mark S. Mirolznik and Dennis W. Prather, 2004, "Soft Source Generation in the Fourier PSTD Algorithm"


NTFF Transformation


• From equivalence principle, when the surface currents on a selected imaginary surface are known, the fields inside the surface or outside the surface can be deduced from the imaginary currents.

NTFF Transformation

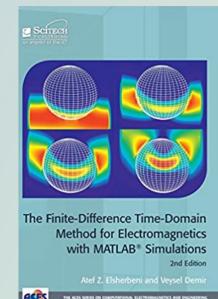
• From the imaginary currents, one can compute the far field of the source with NTFF transformation.

Staggered PSTD

- M. Ding and K. Chen, 2010, "Staggered-grid PSTD on local Fourier basis and its applications to surface tissue modeling"
- Set PSTD grid to Yee grid.
- Advantages include mitigation of discontinuities and least modification of original FDTD code.

Some Advices on Implementing Your Own Code...

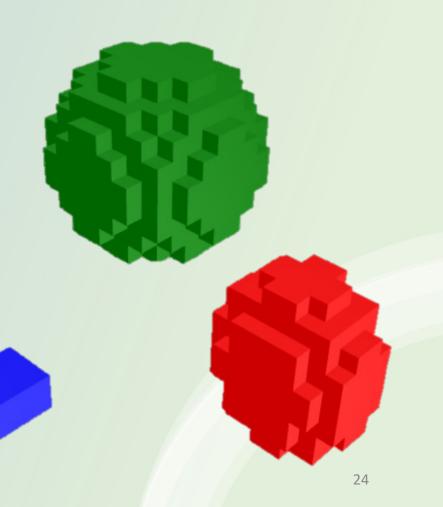
- FDTD (or PSTD) is relatively easy to implement as compared to other CEM methods (there are lots of "toy" codes out there...)
- Start with the basics, progressing from 1D to 2D to 3D. This approach helps avoid getting bogged down in details.
- Find some simple problems to model (dipole radiation, reflection from a plane, etc.) → open your college EM book


Some Useful References For You to Start

John B. Schneider, Understanding the FDTD Method

• Atef Z. Elsherbeni and Veysel Demir, The Finite-Difference Time-

Domain Method for Electromagnetics with MATLAB®


Simulations

Some Interesting Tools I Made (in Julia)

VoxelModel.jl

- Create voxel models with simple geometries
- RadiationPatterns.jl
 - Plot 2D/3D radiation patterns using PlotlyJS.jl

Exercises

- Try to modify your 1D FDTD code into PSTD formulation
- Find out the differences in the implementation
- Compare results of both methods with different simulation scenarios

Thank You!