
Introduction to Julia
Programming

Jake W. Liu

1

Outline

• Overview

• Syntax

• Packages

• Advance Topics

• Exercises

2

Overview

3

Overview

• Julia is a high-level and performative language.

• Julia is designed for technical computing, though its usage is

general.

• Julia is open-source.

• Can call methods defined in C and Python easily.

4

Overview - Installation

• https://julialang.org/downloads/

5

https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/

Overview - Run a Julia Program

• In Terminal

• julia xxx.jl

• In REPL

• include(“xxx.jl”)

6

Overview - REPL

• Enter “]” in REPL => package mode (equivalent to using Pkg)

• add PkgName

• Enter “;” in REPL => shell mode

• Enter “back” to exit REPL

7

Overview – Text Editor

• IJulia + Jupyter Notebook

• Juno

• Pluto

• VS Code (VS Codium)

• …

Terminal

Editor

File Explorer

8

Syntax

9

Syntax – Basic Data Types

• Integers: Int64, Int32

• Real Numbers: Float64, Float32

• Boolean: Bool

• Strings: String

• Self-defined: struct

There are also abstract data types in
Julia. Types are fundamental to Julia
and enable an important feature
called multiple dispatch

10

Syntax – Basics

• Flow controls

• if / elseif / else

• for loop

• while loop

• Most syntaxes are similar with MATLAB!

ü similar mathematical functions

üarray indexing also starts from 1

11

Syntax – Notable Differences with MATLAB

• Arrays are indexed with square brackets, A[i, j].

• Arrays are assigned by reference.

• after A = B, changing elements of B will modify A as well!

• Does not automatically grow arrays in an assignment statement.

• use push!() or append!()

• Literal numbers without a decimal point create integers instead of

floating-point numbers.
see: https://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/manual/noteworthy-differences.html
cheat sheet: https://cheatsheets.quantecon.org/

There are comparisons
with Python out there
as well.

12

https://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/manual/noteworthy-differences.html
https://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/manual/noteworthy-differences.html
https://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/manual/noteworthy-differences.html
https://cheatsheets.quantecon.org/

Syntax – Macros

• Macros are special “functions” that transform and generate code
at compile time, allowing for powerful metaprogramming
capabilities.
• Starts with @

Code Snippet
macro HelloWorld()
 return :(println("Hello World!"))
end

julia> @HelloWorld
Hello World!

13

Syntax – Variable Scope

• The scope of a variable is the region of code within which a

variable is accessible.
Construct Scope type Allowed within

module global global
struct local (soft) global
for, while, try local (soft) global, local
macro local (hard) global
functions, do blocks, let blocks,
comprehensions, generators

local (hard) global, local

begin blocks and if blocks do not introduce new scopes.
https://docs.julialang.org/en/v1/manual/variables-and-scoping/

14

https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/manual/control-flow/
https://docs.julialang.org/en/v1/manual/control-flow/
https://docs.julialang.org/en/v1/manual/control-flow/
https://docs.julialang.org/en/v1/manual/control-flow/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/

Syntax – Variable Scope Example

Code Snippet 1 Code Snippet 2
s = 0 # global
for i in 1:n
 s = s + i # ambiguous!!
end

Solve: add the keyword global
before s in the for loop

function sum_to(n)
 s = 0 # new local
 for i in 1:n
 s = s + i # assign existing local
 end
 return s # same local => OK!
end

15

Packages

16

Package Ecosystems

• Packages: Collections of reusable Julia code that extend the

language's functionality.

• Open source => you can choose your preferred packages!

https://juliahub.com/ui/Packages

17

https://juliahub.com/ui/Packages
https://juliahub.com/ui/Packages
https://juliahub.com/ui/Packages
https://juliahub.com/ui/Packages
https://juliahub.com/ui/Packages

Package Basics

• Package Manager (Pkg): Julia's built-in tool for managing packages,

including installation, updating, and dependency resolution.

• Continuous Integration (CI): Many packages use CI services to

ensure code quality by running automated tests on different

platforms and Julia versions. => Avoids dependency hell!

• using PkgName

18

Package Ecosystems

• LinearAlgebra.jl

• FFTW.jl

• Plots.jl

• Infiltrator.jl

• Flux.jl

• …

19

You should explore the ecosystem
based on your specific needs.

Linear Algebra: LinearAlgebra.jl

• http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdli

b/linalg.html

• Basic matrix-vector operations: *, \...

• Basic LinAlg functions: inv(), dot(), svd()…

20

http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html

Debugging: Infiltrator.jl

• https://github.com/JuliaDebug/Infiltrator.jl

• Add @infiltrate in between the codes to act as breakpoints

• @locals : Print local variables. @locals x y only prints x and y.

• @continue : Continue to the next infiltration point or exit (shortcut: Ctrl-D).

• @exit : Stop infiltrating for the remainder of this session and exit.

21

Debug tool in VS code is not
so efficient in Julia currently.
It is recommended to use this
package for debugging.

https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl

Plottings: Plots.jl

• https://docs.juliaplots.org/stable/

• Concise and flexible (always your first data visualization package).

• Provides a unified API to various plotting backends.

22

I personally prefer to use
PlotlyJS.jl. For a more julian
implementation, one can
check out Makie.jl

https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/

Advance Topics

23

Some Concepts in Parallel Computing

• Asynchronous: interactions with the outside world

• Multithreaded: parallel on multiple CPU cores / single process

• Distributed: parallel on multiple CPU cores / multiple processes

24

Warning: Writing memory-
efficient code is more
important than relying on
parallel programming.

Asynchronous Programming

• @task and @async macro

• @async is equivalent to schedule(@task x)

Code Snippet
julia> t = @task begin; sleep(5); println("done"); end
Task (runnable) @0x00007f13a40c0eb0

julia> schedule(t); wait(t)
done

25

Multi-threaded Programming
• Set thread number at start: julia –t 4 => use 4 threads

• Use the @threads macro

• Be aware of data race issues!

Code Snippet 1 Code Snippet 2
@threads for i = 1:10
 a[i] = Threads.threadid()
end

function sum_multi_bad(a)
 s = 0
 @threads for i in a
 s += i #data race occurs!
 end
 s
end 26

Distributed Programming
• Set process number at start: julia –p 4 => use 4 processes

• Use the @spawnat macro and fetch()

• Data transfer: MPI.jl and SharedArrays.jl

Code Snippet
julia> r = @spawnat :any rand(2,2)
Future(2, 1, 4, nothing)

julia> fetch(r)
2×2 Matrix{Float64}:
0.374379 0.468878
0.564313 0.888577 27

Excercises

28

Start Coding! Some Advices

• Translate current project into Julia (from MATLAB, Python, etc.)

• Create some entertaining small projects

• Ask questions on Julia Discourse

29

https://discourse.julialang.org/
https://discourse.julialang.org/

Electronic Pets: FishTank.jl

• FishTank.jl a fish tank app created with PlotlyJS

• Modeling fish motion with simple linear algebra!

30

https://github.com/jake-w-liu/FishTank.jl
https://github.com/jake-w-liu/FishTank.jl
https://github.com/jake-w-liu/FishTank.jl
https://github.com/jake-w-liu/FishTank.jl

Thank You!

31

