Introduction to Julia
Programming

Jake W. Liu

Outline

* Overview

* Syntax

* Packages

* Advance Topics

e Exercises

Overview

Overview

* Julia is a high-level and performative language.

* Julia I1s designed for technical computing, though its usage is

general.

* Julia is open-source.

* Can call methods defined in C and Python easily.

Overview - Installation

* https://julialang.org/downloads/

The Julia Programming

Language

Download Documentation

https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/

Overview - Run a Julia Program

* |n Terminal
e julia xxx.jl
* |In REPL

o include(“xxx.jl”) PS C:\Users\akjak> julia

Documentation: https://docs.julialang.onrg
Type "?" for help, "]1?" for Pkg help.

Version 1.10.2 (2024-03-01)

|
I
|

/[|
|
| Official https://julialang.org/ release
|

Overview - REPL

* Enter “]” in REPL =>

 add PkgName

 Enter “;” in REPL =>

e Enter “back” to exit REPL

(equivalent to using Pkg)

Documentation: https://docs.julialang.onrg
Type "?" for help, "]?" for Pkg help.

Version 1.10.2 (2024-03-01)
Official https://julialang.org/ release

Overview — Text Editor

lJulia + Jupyter Notebook *“

Juno
Pluto

VS Code (VS Codium)

= <

/O RadiationPatterns

D& [0 08 — O

I

File Explore

v RADIATIONPATTERNS

! TagBot.yml
!I' dependabot.yml
v examples

se ex_array.jl

se ex_basics,jl
ss ex_horn,jl
B Ucsv

> media

v src

so apijl

ss RadiationPatterns.l

Vv test

es runtests,l
.gitignore

I' CITATION.cff
f LICENSE

£ Manifest.toml

£ Project.toml|

® README.md

$* Project.tom| eo apijl ¢s ex_hornjl X

examples > ¢o ex_hornjl > ..

1 using RadiationPatterns

2 using CSV, DataFrames

4 # this file reads a SGH (standard gain horn) radiation pattern 3
= data = Matrix(CSV.read("./examples/U.csv", DataFrame, header=fall
6

7 tht = collect(0:180)

8 phi = collect(0:360)

10 Pat = Pattern(data, tht, phi)

11 Pat = direc_ptn(Pat) # transform to directivity pattern

12 db_ptn!(Pat) # transform to dB scale

14 figl = ptn_3d(Pat, dB = true)
15 display(figl)

& ex_basicsjl D> v [0

PROBLEMS OUTPUT TERMINAL

PS C:\Users\akjak\.julia\dev\RadiationPatterns>

=] powershell + ~ [0 W -+ A

Syntax

Syntax — Basic Data Types

~ Integers: Int64, Int32 Thgre are also abstract data types .|n
Julia. Types are fundamental to Julia
' T
e Real Numbers: Float64, Float32 and enable an important feature

called multiple dispatch

e Boolean: Bool e
e Strings: String al
e Self-defined: struct r

Integer AbstractFloat

Float16
Unsigned BigFloat Float32

Float64
UInt8

UIntl6
UInt32

UInt64
UIntl128

10

Syntax — Basics

e Flow controls
o if / elseif / else
e for loop
e while loop
* Most syntaxes are similar with MATLAB!

v’ similar mathematical functions

v'array indexing also starts from 1

11

Syntax — Notable Differences with MATLAB

¢ Al‘rayS dare |ndexed W|th Square braCketS, A[', J]. There are Comparisons
with Python out there
* Arrays are assigned by reference. as well.

» after A=B, changing elements of B will modify A as well!

* Does not automatically grow arrays in an assignment statement.

* use push!() or append!()

* Literal numbers without a decimal point create integers instead of

floating-point numbers.

see: https://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/manual/noteworthy-differences.html
cheat sheet: https://cheatsheets.quantecon.org/ a

https://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/manual/noteworthy-differences.html
https://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/manual/noteworthy-differences.html
https://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/manual/noteworthy-differences.html
https://cheatsheets.quantecon.org/

Syntax — Macros

* Macros are special “functions” that transform and generate code
at compile time, allowing for

capabilities.
e Starts with @

powerful

metaprogramming

Code Snippet

macro HelloWorld()

end

julia> @HelloWorld
Hello World!

return :(println("Hello World!"))

13

Syntax — Variable Scope

* The scope of a variable is the region of code within which a

variable is accessible.

Construct Scope type Allowed within
module global global
struct local (soft) global
for, while, try local (soft) global, local
macro local (hard) global
functions, do blocks, let blocks, local (hard) global, local

comprehensions, generators

begin blocks and if blocks do not introduce new scopes

https://docs.julialang.org/en/vl/manual/variables-and-scoping/

14

https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/base/base/
https://docs.julialang.org/en/v1/manual/control-flow/
https://docs.julialang.org/en/v1/manual/control-flow/
https://docs.julialang.org/en/v1/manual/control-flow/
https://docs.julialang.org/en/v1/manual/control-flow/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/
https://docs.julialang.org/en/v1/manual/variables-and-scoping/

Syntax — Variable Scope Example

Code Snippet 1

Code Snippet 2

s =0 # global
foriin 1:n

s =s+ i #ambiguous!!
end

Solve: add the keyword global
before s in the for loop

function sum_to(n)
s =0 # new local
foriin1:n
S =s + 1 # assign existing local
end
return s # same local => OK!
end

15

Packages

Package Ecosystems

* Packages: Collections of reusable Julia code that extend the

language's functionality.

* Open source => you can choose your preferred packages!

https://juliahub.com/ui/Packages

Webinar: Comparative Analysis of Cell Chemistries with JuliaSim Batteries - Apr 17, 2024 >

Packages

All Packages

Showing 10739 of 10739 packages

17

JuliaLang/julia W 44399 MIT 1102

The Julia Programming Language

https://juliahub.com/ui/Packages
https://juliahub.com/ui/Packages
https://juliahub.com/ui/Packages
https://juliahub.com/ui/Packages
https://juliahub.com/ui/Packages

Package Basics

* Package Manager (Pkg): Julia's built-in tool for managing packages,

Including installation, updating, and dependency resolution.

* Continuous Integration (Cl): Many packages use CI services to

ensure code quality by running automated tests on different

platforms and Julia versions. =>
* using PkgName

18

Package Ecosystems

* LinearAlgebra.jl
* FFTW.jl

* Plots.jl

* Infiltrator.jl

* Flux.jl

You should explore the ecosystem
based on your specific needs.

19

Linear Algebra: LinearAlgebra.jl

* http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdli

b/linalg.html

* Basic matrix-vector operations: * \...

* Basic LinAlg functions: inv(), dot(), svd()...

20

http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html
http://web.mit.edu/julia_v0.6.2/julia/share/doc/julia/html/en/stdlib/linalg.html

Debugging: Infiltrator.jl

* https://github.com/JuliaDebug/Infiltrator.jl

Add @infiltrate in between the codes to act as breakpoints

@locals : Print local variables. @locals xy only prints x and y.

@continue : Continue to the next infiltration point or exit (shortcut: Ctrl-D).

@exit : Stop infiltrating for the remainder of this session and exit.

Debug tool in VS code is not
so efficient in Julia currently.
It is recommended to use this
package for debugging.

21

https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl
https://github.com/JuliaDebug/Infiltrator.jl

Plottings: Plots.jl

* https://docs.juliaplots.org/stable/

* Concise and flexible (always your first data visualization package).

* Provides a unified API to various plotting backends.

| personally prefer to use
PlotlyJS.jl. For a more julian
implementation, one can
check out Makie.jl

22

https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/
https://docs.juliaplots.org/stable/

Advance Topics

Some Concepts in Parallel Computing

* Asynchronous: interactions with the outside world

* Multithreaded: parallel on multiple CPU cores / single process

* Distributed: parallel on multiple CPU cores / multiple processes

: Writing memory-
efficient code is more
important than relying on
parallel programming.

24

Asynchronous Programming

* @task and @async macro

* @async is equivalent to schedule(@task x)

Code Snippet

julia>t = @task begin; sleep(5); println("done"); end
Task (runnable) @0x00007f13a40c0eb0

julia> schedule(t); wait(t)
done

25

Multi-threaded Programming

* Set thread number at start: julia -t 4 => use 4 threads
* Use the @threads macro

e Be aware of data race issues!

Code Snippet 1 Code Snippet 2
@threads fori=1:10 function sum_multi_bad(a)
a[i] = Threads.threadid() s=0
end @threads foriina
s += | #data race occurs!
end
S
end

26

Distributed Programming

* Set process number at start: julia—-p 4 => use 4 processes
* Use the @spawnat macro and fetch()

* Data transfer: MPL.jl and SharedArrays.jl

Code Snippet

julia>r = @spawnat :any rand(2,2)
Future(2, 1, 4, nothing)

julia> fetch(r)

2x2 Matrix{Float64}:
0.374379 0.468878
0.564313 0.888577

Excercises

Start Coding! Some Advices

* Translate current project into Julia (from MATLAB, Python, etc.)
* Create some entertaining small projects

* Ask questions on

29

https://discourse.julialang.org/
https://discourse.julialang.org/

Electronic Pets: FishTank.jl

. a fish tank app created with PlotlyJS

* Modeling fish motion with simple linear algebra!

30

https://github.com/jake-w-liu/FishTank.jl
https://github.com/jake-w-liu/FishTank.jl
https://github.com/jake-w-liu/FishTank.jl
https://github.com/jake-w-liu/FishTank.jl

Thank You!

