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Different Approaches to Learn FT

Mathematical Methods

Signals and Systems

Pure Math

Engineering

Physics 

Digital Signal Processing

Fourier Optics

Fourier Analysis

Applied Science

Neither accurate 
nor exhaustive 
characterization 🫠
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Goal of This Introduction

• Learn FT from a programming point of view (practical)
• Prove basic properties from known examples
• Hands-on introductions (learn to use FFT first)
• Find Fourier coefficients of periodic signals
• Approximate Fourier transforms
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An FFT Example

• We are using Julia as the programming language. Two packages 
are used (for plotting and FFT)

• Suppose we have a signal with the form

• Function s(t) can represent any physical phenomena. Let it be “my 
daily energy”.

using PlotlySupply
using FFTW

s(t) = 0.5 * sin(2pi * t / 24) + sin(2pi * t / 24 / 7) + 1.5 # whatever vs. hour
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An FFT Example

• Let’s plot the signal in a weekly scale and daily scale: 

hour = collect(1:24*7*1)
day = hour ./ 24
eng = s.(t)

ylabel = "energy"
fig1 = plot_scatter(day, eng; xlabel = "time (day)", ylabel = ylabel)
display(fig1)

fig2 = plot_scatter(hour, eng;
xlabel = "time (hour)",
ylabel = ylabel, 
xrange = [1, 24], 
yrange = [1.4, 2.4])

display(fig2)
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An FFT Example
𝑠(𝑡) = 0.5sin(2𝜋𝑡 / 24) + sin(2𝜋𝑡 / 168) + 1.5
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An FFT Example

• Suppose you know nothing about FFT… Before 
understanding any mathematics, let’s plot a FFTed result first

• Some observations:
• engf is complex valued 

(thus the absolute value is plotted)
• We still don’t know the meaning of x-axis
• FFT result (engf) ó s(t)’s coefficient?

engf = fft(eng)

fig3 = plot_stem(abs.(engf)) # what is this???
display(fig3)
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An FFT Example

• Let’s do some magic… Our goal is the sort out the coefficients of 
s(t) from the FFT result engf. Maybe after some try and error 😂:

# our goal is to find the coefficient 0.5 & 1 in s(t) from engf
n = length(engf)
engf ./= n
srate = 1 ./ (hour[2] - hour[1])
if isodd(n)
fac = (n - 1) / n

else
fac = 1

end
f = LinRange(0, srate / 2 * fac, floor(Int64, n / 2 + 1))
fsig = engf[1:length(f)]
fsig[2:end] .= 2 .* abs.(fsig[2:end])

fig4 = plot_stem(f, abs.(fsig), xlabel = "frequency (1/hour)", ylabel = "coef.") 
display(fig4)
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An FFT Example
𝑠(𝑡) = 0.5sin(2𝜋𝑡 / 24) + sin(2𝜋𝑡 / 168) + 1.5

(0, 1.5)

(1/168, 1)

(1/24, 0.5)

Single-sided Fourier spectrum
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Finding Fourier Coefficients with FFT

• Okay, let’s try to write a function that returns the single-sided
Fourier spectrum and the frequency span (given the signal and
sampling rate)

function fft_fs(sig, srate = 1)
Sig = fft(sig)
N = length(Sig)
Sig ./= N
if isodd(N)
f = LinRange(0, srate / 2 * (N - 1) / N, floor(Int64, N / 2 + 1))

else
f = LinRange(0, srate / 2 * 1, floor(Int64, N / 2 + 1))

end

sSig = Sig[1:length(f)]
sSig[2:end] .= 2 .* abs.(sSig[2:end])

return sSig, f
end
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Finding Fourier Coefficients with FFT

• A simple sinusoidal example:

srate = 100
time = collect(0 : 1/srate : 0.5 - 1/srate)
N = length(time)

# boring sinusoids
s1(t) = 2 + sin(2pi*5*t) + 3 * cos(2pi*30*t) + 1.5 * sin(2pi*50*t + pi/5) 
S1, freq = fft_fs(s1.(time), srate)
fig_td = plot_scatter(time, s1.(time), xlabel = "time (sec.)", ylabel = "amplitude.") 
fig_fd = plot_stem(freq, abs.(S1), xlabel = "frequency (Hz)", ylabel = "coef.") 
fig = [fig_td; fig_fd]
set_template!(fig, :plotly_white)
display(fig)
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Finding Fourier Coefficients with FFT

• We found out that the component at 5 Hz is not well captured… 
𝑠 𝑡 = 2 + sin(2𝜋 ∗ 5 ∗ 𝑡) + 3 cos 2𝜋 ∗ 30𝑡 + 1.5 ∗ 𝑠𝑖𝑛(2𝜋 ∗ 50 ∗ 𝑡 + 𝜋/5)

Nyquist limit = sampling rate / 2
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Increasing Sampling Rate

• Case A: increase the sampling rate to 200 (decrease ∆𝑡)

∆𝑓 does not decrease!
𝑓!"# is extended
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Increasing Signal Length

• Case B: extend the total sampling time to 1 (doubles signal length)

Signal at 5 Hz is now covered
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Some Observations

• The amplitude of the FFT result is proportional to the signal length
𝑁 (a normalization is needed)*
• maximum frequency 𝑓!"# equals to sampling rate divided by 2.
• For single-sided spectrum, a factor of 2 (except the DC

component) is needed.
• Decreasing ∆𝑡 increases the 𝑓!"#
• Extending total signal length𝑁 decreases ∆𝑓

* This actually depends on the definition of DFT.

∆𝑓∆𝑡 = 1/𝑁
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Approximation of FT with FFT

• We can also approximate Fourier transform with FFT. 

• Consider the function 𝑔 𝑡 = 𝑒$%&!, its Fourier transform is known 
analytically, which has the same form as 𝑔 𝑡 .

srate = 20
dt = 1/srate
tb = 4
t = collect(-tb : 1/srate : tb-1/srate)
sig = exp.(-pi.*t.^2)
N = length(t)

display(plot_scatter(t, sig))
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Approximation of FT with FFT

• The proper way to do this is to 
1. fft the signal
2. multiply ∆𝒕
3. conduct fftshift

f = collect(-N/2:1:N/2-1) .* srate ./ N
sig_dft = zeros(ComplexF64, N)
sig_dft = fft(sig) .* dt
sig_dft .= fftshift(sig_dft)
display(plot_scatter([t,f], [sig, abs.(sig_dft)], 
xrange=[-tb,tb], legend=["g(t)", "G(f)"]))
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On Frequency Range and Shift

• Frequency range after fftshift: 

−ceil
𝑁 − 1
2

: 1loor
𝑁 − 1
2

∆𝑓

• Frequency range before fftshift

0: 1loor
𝑁 − 1
2

;−ceil
𝑁 − 1
2

:−1 ∆𝑓

• Use fftshift after fft if 0-centered frequency is needed
• Use ifftshift before ifft if 0-centered frequency is applied
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Summary

• Fourier Transform (FT) in Practice
• Learn by coding first, understand theory later
• Use FFT to extract frequency components of signals.

• Understanding FFT Results
• Find Fourier series
• Approximate Fourier transform

• Improving Frequency Analysis
• Relationship between sampling rate, resolution and signal length
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