Fourier Transform and Its
Application

Outline

Introduction
* Different approaches to learning FT

FFT in Action

* Implementing FFT in Julia
* Visualizing time-domain and frequency-domain signals

Understanding FFT Output
 Complexvalues and magnitude interpretation
* |dentifying sighal components from FFT results

Improving Frequency Analysis
* Effect of sampling rate and signal length
* Resolving frequency components accurately

Practical Considerations
* Nyquist limit and aliasing
* Scaling and normalization in FFT

Summary

Different Approaches to Learn FT

Pure Math

Applied Science

Physics

Engineering

Fourier Analysis
Neither accurate

nhor exhaustive
characterization &

Fourier Optics

Mathematical Methods

Signals and Systems

Digital Signal Processing

Goal of This Introduction

* Learn FT from a programming point of view (practical)

* Prove basic properties from known examples

* Hands-on introductions (learn to use FFT first)
* Find Fourier coefficients of periodic signals
* Approximate Fourier transforms

An FFT Example

* We are using Julia as the programming language. Two packages
are used (for plotting and FFT)

using PlotlySupply
using FFTW

* Suppose we have a signal with the form

s(t) = 0.5 % sin(2pi x t / 24) + sin(2pi x t / 24 / 7) + 1.5

* Function s(t) can represent any physical phenomena. Let it be “my
daily energy”.

An FFT Example

* Let’s plot the signal in a weekly scale and daily scale:

hour = collect(1:24%7x%1)
day hour ./ 24
eng s.(t)

ylabel = "energy"
figl = plot_scatter(day, eng; xlabel = "time (day)", ylabel = ylabel)
display(figl)

fig2 = plot_scatter(hour, eng;
xlabel "time (hour)",
ylabel = ylabel,
Xrange [1, 241,
yrange = [1.4, 2.4])
display(fig2)

gy

An FFT Example

s(t) = 0.5sin(2mt / 24) + sin(2mnt /168) + 1.5

2.5-
2-/\/
o 1.5-
[~
[\
2.4
1.

time (day)

energy
"
® by

time (hour)

An FFT Example

* Suppose you know nothing about FFT... Before
understanding any mathematics, let’s plot a FFTed result first

so0-{ @

engf = fft(eng)

400

fig3 = plot_stem(abs. (engf))
display(fig3)

300+

e Some observations:

* engfis complex valued

100+

(thus the absolute value is plotted) I

* We still don’t know the meaning of x-axis

* FFT result (engf) <~ s(t)’s coefficient?

An FFT Example

* Let’s do some magic... Our goal is the sort out the coefficients of
s(t) from the FFT result engf. Maybe after some try and error &:

n = length(engf)
engf ./=n
srate = 1 ./ (hour[2] - hour[1])
if isodd(n)
fac = (n - 1) / n
else
fac = 1
end
f = LinRange(0@, srate / 2 *x fac, floor(Int64, n / 2 + 1))
fsig = engf[1l:length(f)]
fsig[2:end] .= 2 .x abs.(fsigl[2:end])

figd = plot_stem(f, abs.(fsig), xlabel = "frequency (1/hour)", ylabel = "coef.")
display(fig4)

An FFT Example

2.5

0.54

coef,

T T T T

1 2 3 4
time (day)

s(t) = 0.5sin(2mt / 24) + sin(2mnt /168) + 1.5

- 0.8

1.6

1.4

1.2

0.6

0.4 4

0.2+

T
0

T T T
0.1 0.2 0.3 0.4 0.5

frequency (1/hour)

Single-sided Fourier spectrum

Finding Fourier Coefficients with FFT

* Okay, let’s try to write a function that returns the single-sided
Fourier spectrum and the frequency span (given the signal and
sampling rate)

function fft_fs(sig, srate = 1)
Sig = fft(sig)
N = length(Sig)
Sig ./= N
if isodd(N)
f = LinRange(@, srate / 2 x (N - 1) / N, floor(Int64, N / 2 + 1))
else
f = LinRange(@, srate / 2 x 1, floor(Int64, N / 2 + 1))
end

sSig = Sig[1:length(f)]
sSig[2:end] .= 2 .%x abs.(sSig[2:end])

return sSig, f
end

11

Finding Fourier Coefficients with FFT

* A simple sinusoidal example:

srate = 100
time = collect(® : 1/srate : 0.5 - 1/srate)
N = length(time)

s1(t) = 2 + sin(2pi*5xt) + 3 * cos(2pix30xt) + 1.5 * sin(2pix50xt + pi/5)

S1, freq = fft_fs(sl.(time), srate)

fig_td = plot_scatter(time, sl.(time), xlabel = "time (sec.)", ylabel = "amplitude.")
fig_fd = plot_stem(freq, abs.(S1), xlabel = "frequency (Hz)", ylabel = "coef.")

fig = [fig_td; fig_fd]

set_template! (fig, :plotly_white)

display(fig)

12

Finding Fourier Coefficients with FFT

amplitude.

coef.

s(t) = 2 +sin(Zm * 5 * t) + 3 cos(2Zm * 30t) + 1.5 * sin(2m * 50 *t +m/5)
* We found out that the component at 5 Hz is not well captured...

o N o (=]
1 1 1 1

|
N
1

T T
0.05 0.1

o

| T
0.15 0.2

|
0.25

time (sec.)

T T
0.3 0.35

T T
0.4 0.45

Nyquist limit = sampling rate / 2

T
20

frequency (Hz)

T
30

T
40

T
50
13

Increasing Sampling Rate

* Case A: increase the sampling rate to 200 (decrease At)

amplitude.

5_
0._‘
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
time (sec.)
34 .
Af does not decrease!
2] | fmax is extended
8 B
& 1-
* L
0 T Yoo ® o000 e seeeses0soe! 5 8000000000000 0080000000es0
0 20 40 610 80 100

frequency (Hz)

Increasing Sighal Length

* Case B: extend the total sampling time to 1 (doubles signal length)

o N S)]
1 1 1

amplitude.

I
N
1

T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

o

time (sec.)

Signal at 5 Hz is now covered

coef
g
™ 7 &“ 5
&

0— ® 0 40 /8 & & & & 5 9 0 0000 ET OO OO SO L EE BE BE BN BN BN B B BN R BN BN BN BN BE B B BN

I I 1 I 1 I
0 10 20 30 40 50

Ad

15
frequency (Hz)

Some Observations

* The amplitude of the FFT result is proportional to the signal length
N (a normalization is needed)*

* maximum frequency [, €quals to sampling rate divided by 2.

* For single-sided spectrum, a factor of 2 (except the DC
component) is needed.
* Decreasing At increases the f,,, 4+

AfAt =1/N
* Extending total signal length N decreases Af / /

* This actually depends on the definition of DFT.

Approximation of FT with FFT

* We can also approximate Fourier transform with FFT.

 Consider the function g(t) = e~t° its Fourier transform is known
analytically, which has the same form as g(t).

1

srate = 20

dt = 1/srate

th = 4

t = collect(-tb : 1/srate : tb-1/srate)
sig = exp.(-pi.xt.”2)

N = length(t) "

0.84

0.6

0.2

display(plot_scatter(t, sig))

0

Approximation of FT with FFT

* The proper way to do thisis to
1. fftthe signal
2. multiply At
3. conduct fftshift

f = collect(-N/2:1:N/2-1) .x srate ./ N
sig_dft = zeros(ComplexF64, N)
sig_dft = fft(sig) .x dt

sig_dft .= fftshift(sig_dft)
display(plot_scatter([t,f], [sig, abs.(sig_dft)],
xrange=[-tb,tb], legend=["g(t)", "G(f)"]))

0.8

0.6

0.4+

0.2

—g(t)
G(f)

18

On Frequency Range and Shift

* Frequency range after fftshift:

(e oo

* Frequency range before fftshift

(O: floor [N 2_ 1] ; —ceil [N 2_ 1] ; —1) Af

* Use fftshift after fft if 0-centered frequency is needed

* Use ifftshift before ifft if 0-centered frequency is applied

19

Summary

* Fourier Transform (FT) in Practice
* Learn by coding first, understand theory later
* Use FFT to extract frequency components of signals.

* Understanding FFT Results
* Find Fourier series
* Approximate Fourier transform
* Improving Frequency Analysis
* Relationship between sampling rate, resolution and signal length

