Chapter 13

Geometrical Theory of
Diffraction (GTD)
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Advantages of GTD/UTD

. It 1s simple to apply

. It can be used to solve complicated problems
that do not have exact solutions

. It provides physical insight

. It yields accurate results that compare well
with experiments and other methods

. It can be combined (hybridized) with other
techniques, such as the Moment Method
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Application Approach

Decompose a complex structure into
simpler parts each of which
resembles that of a canonical
problem the solution of which 1s
known.
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Canonical Problems

Simpler boundary-value problems, which
have the same local geometry at the points
of diffraction as the object at the points of
interest.

Examples of canonical problems include a
wedge, cylinder, cone, corner, etc.
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One of the main interests of diffraction by wedges is that engineers
and scientists have investigated how the shape and material properties
of complex structures affect their backscattering characteristics. The
attraction in this area is primarily aimed toward designs of low-profile
(stealth) technology by using appropriate shaping along with lossy or
coated materials to reduce the radar visibility. as represented by radar
cross section (RCS). of complex radar targets. such as aircraft, spacecraft
and missiles. A good example 1s the F-117 shown 1n Figure 13-1, whose
surface 1s primarily structured by a number of faceted wedges because, as
will become evident from the developments, formulations, examples and
problems of this chapter (see also Problem 13.50), the backscatter from
exterior wedges 1s lower than that of convex curved surfaces. While in
this chapter we will focus on the diffraction by PEC wedges, the
diffraction by wedges with impedance surfaces, to represent lossy and

composite wedge surfaces, will be the subject of Chapter 14.
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Printed with permission from Lockheed Martin.
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Geometrical Optics
(GO)
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Amplitude
Spreading
Factor
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Geometrical Optics (GO) 1s an
approximate high-frequency method
for determining wave propagation for
incident, reflected, and refracted
fields. Because it uses ray concepts,
1t 1s often referred to as ray optics.
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Origmally GO was developed to analyze the
propagation of light at sufficiently high
frequencies where 1t was not necessary to
consider the wave nature of light. Instead the
transport of energy from one point to another in
an 1sotropic lossless medium 1s accomplished
using the conservation of energy flux in a tube
of rays. For reflection problems, GO
approximates the scattered fields only toward
the specular directions as determined by Snell’s
Law of Reflection.
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Geometrical Optics (GO)

* Direct Rays

» Reflected Rays
(Snell’s Law of Reflection)

» Refracted Rays
(Snell’s Law of Refraction)
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Fermat’s Principle
Calculus of Variation

P Maximum'
o| n(s)ds=Extremum
P, or
Minimum

In our case a mmimum

n(s) = mndex of refraction

n(s) = n = constant for homogeneous

medium
o = variational differential
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Objectives

(Given the primary wavefront v, (@ t))

1. Determine the secondary wavefront
surfaces v, att=+¢ _,>t, , n=0,1, ..
2. To determine the power density
field intensity on the secondary

wavefront to those of the primary

or previous wavefronts
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The family of wavefront surfaces

v (x,y,z), n=0, 1, 2, ., that are normal
to each of the radial rays 1s referred to
as the Eikonal Surfaces, and they can
be determined using the Eikonal
Equation.
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l Equation for Eikonal Surfaces

Eikonal Equation

Vi, (x.0.2)] =n'(s)

(8%)2 A ,(8%)2 ()
ox oy 0z

(13-2)
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Eikonal Surfaces for a Plane Wave

S

Eikonal surfaces v, (x, y, 2) Fig. 13-3(a)
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Eikonal Surfaces for a Cylindrical Wave

Eikonal surfaces v, (p, ¢. 2)

Ty

Y X Fig. 13-3(b)
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Eikonal Surfaces for a Spherical Wave

Eikonal surfaces v, (r, 6, ¢)

Fig. 13-3(c¢)
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It 1s evident that the eikonal surfaces for:
a. Plane waves are planar surfaces
perpendicular to the direction

of wave travel

b. Cylindrical waves are
cylindrical surfaces
perpendicular to the cylindrical
radial vectors

c. Spherical waves are spherical
surfaces perpendicular to the
spherical radial vectors
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Tube of Rays for a Spherical Wave

dA

Fig. 13-4
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Amplitude
Spreading
Factor
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S(s) dA
q — iy (13-3a,b)

o

SdA =85 dA=

S(r,6,9) =%R6[E><H*]

N
H=a x=
77

—_— /

S(r.0,9)=a, —‘E(’” 0.9
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S(r,0,9) :—|E(r 0 ¢)| \f E(r,0 ¢)\
(13-4)
S(s) _dd, _ 2 Fl

S dA LE2=E2
277 0 0]
da, |E[

(13-5a)
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Spatial Attenuation (Divergence) Factor

o Planar Wavefront:

E . .
L|: d 0 — %: 1 1= Constant (13-8)
E| Vat |4,
® Cylindrical Wavefront.
@: jddy _ 27 Ry /Gy _ Ry _|[_Ps (13-7)
E,| dA 27 R, /C, R, P, + S
©® Spherical Wavefront.

Ez)%: 477R§/C1:R§:Ro: Po 6
‘Eo‘ dA 4z R’ /C, R R |py+s (130
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General Wavefront

Astigmatic Tube
of Rays
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Fikonal Surface

Wave front
(eikonal)
surface

2

Fig. 13-5(a)
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Caustic Lines

Fig. 13-5(b)
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- A caustic 1s a point, a line, or a surface
through which all the rays of a wave pass.

Examples of 1t are the focal point of a

paraboloid and the focal line of a
parabolic cylinder.

- The field at a caustic 1s infinite, 1n

principle, because an infinite number
of rays pass through it.
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Astigmatic Tube of Rays:

@z @: (pdO) (p,dp)
E,| N dA \ (o, +s) dO (p,+s) do
ﬂ: a4, _ P1P;
‘E0| dA \J(p1+5) (,02 +S)
(13-9)
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Non Spherical Wavefront:

(13-9)
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OIf the incident field is spherical

P = LPr=Po

@If the incident field is cylindrical

Pr=Pos Pr =% O P =0, O, =p,
©If the incident field is a plane wave

P = Pr =X

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction




For classical geometrical optics the transport
of energy from one point to another n an
1sotropic lossless medium 1s accomplished
using the conservation of energy flux in a
tube of rays.

This accounts only for the amplitude and it
does not mclude the wave nature of the

wave; That 1s, 1t does not mclude phase and
polarization.
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Phase

And
Polarization
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Phase and polarization information
can be introduced by examining the
approach introduced by Luneberg
and Kline to develop high-frequency
solutions of EM problems.
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Luneberg (1944)- Kline (1951)
Series Expansion of the E-Field for Large @

E(Ro)=e @Y E, (%) (13-10)
m=0 (]CO)
i V'E+[°E=0 - Wave Equation (13-11)
<
V-£=0 - Maxwell’s Equation  (13-12)

" a. Eikonal Equation
< b. Transport Equations (first- & higher-orders)
_c. Conditional Equations (first- & higher-orders)
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a. Eikonal Equation
, = eikonal surface
\VW\ =n where . . (13-13a)
, n = index of refraction
b. Transport Equations

(1) 920 1 VY E,=0 <e==p first-order term  (13-13Db)
os 2\ n
aEm 1 Vzl// - Vp 2
@ as 5( n ]E’" - ?V Ey1  qmmmp higher-order terms (13-13c)
m=1,2,3... _ : 4 :

c. Conditional Equations v, velocity of light in medium
QO 5 E,=0 <==p first-order term (13-13d)
® L, =vVE, s higher-order terms (13-13e)

m=1,2.3... where 5= ¥ - unit vector in the direction of propagation

7 (normal to y)

s = distance along the ray path
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Seeking solution of the form
E(s)z=e""YE, (5= O) (13-14)

By mtegrating first-order transport equation
along s, 1t can be shown that

E(s)=E_(0) e‘-’ﬁ”’(o)\/ PP o) B (13-15)

(:,01+S) (pz +S)

or
E(s)=E}(0) /% A e/ (13-15)
[ (o, +5) (P, +5)
Field at reference - a o\ Y
point (s=0) Spatial Attenuation Phase Factor

(divergence) factor
E’(0) = field amplitude at reference point (s = 0)
¢ (0) = field phase at reference point (s = 0)
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Extended Geometrical Optics

B P P> —Jjps
E(s)=E (0 !
_(S) \;Of(_)JJ(pl +S)(p2 +S) &_} (13-153)

RF
ASF

RF =E (0) = Field at Reference Point s=0

ASF = Amplitude Spreading Factor
PF = Phase Factor
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It 1s evident that the leading term of the Luneberg-
Kline series expansion solution for large w predicts
the spatial attenuation relation between the electric
fields of two points as obtained by classical
geometrical optics.

[t also predicts the phase and polarization of the
fields between the two points. This 1s only a high-
frequency approximation, and it becomes more
accurate as the frequency approaches infinity.
However, for many practical engineering problems

it does predict quite accurate results.
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In principle, more accurate expressions to the
GO approximation can be obtained by
retamning higher-order terms in the Luneberg-
Kline series expansion. However such a
procedure 1s very difficult. In addition, the
resulting terms do not remove the
discontinuities mtroduced by GO along the
incident and reflection boundaries.
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GO (Luneberg-Kline Series)

1. They improve the high-frequency field approximations
if the observation specular point 1s not near edges,
shadow boundaries, or other surface discontinuities.

2. They become singular as the observation specular
point approaches a shadow boundary on the surface.

3. They do not correct GO discontinuities along
incident and reflection shadow boundaries.

4. They do not describe the diffracted fields in

the shadow region.
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Extended Geometrical Optics

B P1 P2 —JjPs

E(s)=E (0

_(S) ;0((_)/J(,01 +S)(,02 +S) \i/_/ (13-15a)
RF - ~  PF

ASF

RF =E (0) = Field at Reference Point s=0

ASF = Amplitude Spreading Factor
PF = Phase Factor
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It should be noted that when the observation
1s chosen so the s = -py the equation for the
extended GO possesses singularities
representing the congruence of the rays at
the caustic lines PP’ and QQ°. Therefore
this equation 1s not valid along caustics and
not very accurate near them, and 1t should
not be used in those regions.

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



Fikonal Surface

Wave front
(eikonal)
surface

2

Fig. 13-5(a)

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



Caustic Lines

Fig. 13-5(b)
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In addition, 1t 1s observed that when

-0 < § <-p; the sign m the p;+s term of the
denominator changes. Similar changes of
sign occur i the p+s and p,+s terms when
s < -p; < -p;. Therefore the extended GO
equation correctly predicts the +90° phase
jumps each time a caustic 1s crossed n the
direction of propagation.
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Reflected Fields
(Reflection from Surfaces)
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Reflection From a Curved Surface

€N
n
N
A~
-
D 0; g,
S i
Or
S
(a) Reflection point Fig. 13-6
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Retlected Field

E' =E(Qy)-RAe”

E'(QOr) = incident field at point of reflection Oy

o~

R = dyadic reflection coefficient

A = amplitude spreading factor \/ ‘ Pr P :
(,01 +S) (/02 +S)

e7P = phase factor
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Reflection From a Curved Surface

(b) Astigmatic tube of rays Fig. 13-6
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e xs'=¢ (13-16a)

& x§" =& (13-16b)

E,(s=0)= A2 (13-17a)

E)(s=0)=¢E, -k (13-17b)
E'(s=0)=L"(Q,) R

E' )=L(C) (13-18)

_(simi  aimi . (5i, 57
_(enEu +e¢EL) (e”eH eLeL)

A~ Ai A,‘

_ Sior
R=e¢e —¢e

= Dyadic Reflection Coefficient
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Ej(0)=

In Matrix Form

RII,II
RL,II

E R

| || |
—1

R,

5 — El El
R, = £} E! ]
or
+E| R, L =£,(0)

—O

E7(0)= E, ]j',i +E' R, =-E'(0)

=0
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Determine Reflected Field (First-Order, E,)

—0

E,=¢E,+¢E. - Retlected Field

—O0

A. Reﬂected Field E " (s=0") at point
of Reflection (s=0")

Ey(s =07) =E'(Qy)-R=| E,(Qy) | [/ -él¢ ] (13-18)

E" (s=07) = reflected field at point of reflection QO
(reference point is taken at s=0")

E' (Or) = mcident field at point of reflection Oy

E' = e“E ' +é E' - Incident Field

R = dyadic reflection coefficient
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E,(s=0)= [E4(0,) ] e e

= leiE], 8L EL, | leter ~éier
1 0

E (s=0)= "'-eﬂ" %(E’ MJ}E&
él %r : MQLEQ

E (s=0)= é"r _¢ .k,
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In matrix form
1 O
0 -1

[R]=

B. Reflected Field E (s)at s

- P Ps
E'()=E©Q,) R 3 o i el
p— — 'R _ — ¥ r ( ]. 3'20)
Incident Reflection ,01 + ,02 TS Phase
Field @ OR Coefficient . , Factor
Amplitude Spreading
Factor

P, , p, = principal radii of curvature of reflected

wavefront at the point of reflection Q,
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Extended Geometrical Optics

E(s)=E, (s =0) A5 e P
~ —— N\ (o, +5) (P, +5) 57

. J/

RF

ASF

RF = E _(0) = Field at reference point s=0

ASF = Amplitude spreading factor
PF = Phase Factor
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Determine Reflected Field (First-Order, E))

E,=¢EL+¢ E., -Incident Field
Er=¢En+e E;, -Retlected Field

A. Reflected Field E (s=0") at point
of Reflection (s=0")

El(s =0) =E'(0,)-R=[E.(0,)][¢¢ -&.&]

E" (s=0) = reflected field at point of reflection Qp
(reference point is taken at s=0)

E' (Or) = mcident field at point of reflection Oy

R = dyadic reflection coefficient
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E (s=0)=E'( \E (Or) J [euiéﬁ _éiéi]
In Matrix Form
EL(s=0)=|E'(0q)}|R]

E;'(S = 0)
E, (s=0)

&III R\I.-l :|

_L ] R_L_._L

J /00 E! (Q@]{

| | 0
Ey(s=0)=E(Qz) R+ Ei(QR )ﬁ/;“

| 0 -
Ec:L(SZO):EHZ(QR) |,|_+EZ_I(QR) 1,1
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In matrix form
1 O
0 -1

R]-

B. Reflected Field E /(s)at s

- P Ps
E'(s)=E(0Qy)- R — e (1320
i — ‘R g —— r r —_— ( )
Incident Reflection ,01 + ,02 + S Phase
Field @ OR Coefficient . , Factor
Amplitude Spreading
Factor

P, , p, = principal radii of curvature of reflected

wavefront at the point of reflection Q,
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Reflected Field

E' =E'(Qy) RAe” a0

E'(QOr) = incident field at point of reflection Oy

o~

R = dyadic reflection coefficient

A = amplitude spreading factor \/ ‘ Pr P :
(,01 +S) (/02 +S)

e7P = phase factor
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Reflection From A
General Curved Surface
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Reflection from a 3-D Curved Surface

Fig. 13-7

(a) Principal radii of curvature
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Retlected Field

£ = Ei (QR) R Ae P (13-20)

E'(QOr) = incident field at point of reflection Oy

o~

R = dyadic reflection coefficient

ASF = amplitude spreading \/ Pi P>

factor (Pl +9) (P} +5)
e7P = phase factor
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Principal Radii of Curvature of Reflected Wavefront ( plr , p; )

\
1 11 1) 1 . y
— == —+—|+— Principal radit  (13.21a)
pr 2\p Py) - i _i _ of curvature
L1011 ) 1 (P P2T ofincident
il Besra el e wavefront (13-21b
pr 2\pn p) fo )

These equations are similar in form to the simple

lens and mirror formulas of elementary physics.

In fact, when the incident wave i1s spherical, f; and

/> represent focal distances that are independent

of the source range that 1s creating the spherical wave.
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For incident spherical wavefront (o = p! =)
11 (sin2 o, N sin” 6, ] +\/ 1 (sin2 0, N sin” 6, jz 4 (13-22a)

.

.

. .
. "
Teast

fi cos@.\ R R, cos’6.\ R R, | RR
1 1 [sin° o, L sin” o, _ l? sin” &, L sin” 6| 4 (13-22b)
f, cos@ | R R, ) ="\cos @ R R, R R,
where:

R,, R, = radui of curvature of the reflecting surface
0,= angle between the direction of the incident ray §' and z,

0,= angle between the direction of the incident ray §' and U,

i, = unit vector in the principal direction of S at Oy with
principal radius of curvature R,

1, = unit vector in the principal direction of S at Oy with
principal radius of curvature R,

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



O If the incident field is spherical
| distance from the source to the

IOI :p:l2 :S’: pomt
of reflection Oy

@I the incident field is cylindrical

4

= p

bo =~

I ' I I
101:109 102:%' or 1012007 P

where p” = distance from the source to the
point of reflection Op

©If the incident field is a plane wave

pL=p,=®
1 1 — -, RR
Then ——=—r= or  pip;=——-=(13-23,a)
pipy [y RR, | 4
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Reflection from a 3-D Curved Surface

Principal
plane

Principal

section

Normal curve

section
curve

(b) Normal section curves and principal planes Fig. 13-7
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To give some physical insight into the principal radii
of curvature R; and R, of a reflecting surface, let us
assume that the reflecting surface 1s well behaved
(smooth and continuous). At each point on the
surface there exists a unit normal vector. If through
that point a plane intersects the reflecting surface, it
generates on the reflecting surface a curve as shown
in the figure. If in addition the intersecting plane
contains the unit vector to the surface at that point,
the curve generated on the reflecting surface by the
intersecting plane is known as the normal section
curve, as shown 1n the figure.
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[f the intersecting plane 1s rotated about the surface
normal at that point, a number of unique normal
sections are generated, one on each orientation of
the itersecting plane. Associated with each normal
section curve, there 1s a radius of curvature. It can
be shown that for each point on an arbitrary well
behaved curved reflecting surface, there is one
intersecting plane that maximizes the radius of
curvature of 1ts corresponding normal section curve
while there 1s another intersecting plane at the same
point that minimizes the radius of curvature of its
corresponding normal section curve.
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For each pomt on the reflecting surface
there are two normal section radi of
curvature, denoted as R, and R, and
referred to as the principal radii of
curvature, and the two corresponding
planes are known as the principal planes.
For an arbitrary surface, the two principal
planes are perpendicular to each other.
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Plane Wave Incidence
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When s>>p/, p,

i -
s3>0 A) A)
7
S>>0 ror
v i '” pl p?. —jpPs
E'(s) = E'(Qy) -R e

S:-f}pé S
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Example 13-1:
Plane wave Scattering
From A
PEC Sphere
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Example 13—1:

A linearly polarized uniform plane wave of amplitude
E_ 1s incident on a conducting sphere of radius a.

Use geometrical optics methods.

1. Determine the far-zone (s >> p, and p,) fields that
are reflected from the surface of the sphere.

2. Determine the bascatter radar cross sections.
Solution:

It follows.
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reoN ¥ P1 P, _ips
E(s)=E(Q;) ‘R (p{'+sl) (p£.+s)e’

When s>>p/, p,

‘ .s>>p{ . N r T |
E'(s) = E(Q) ‘R *——=¢"

s> ph S
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2

a ; i

Since  p; p; = vy when p/ =p, =
Then
E(s) = EI(QR)I'é \VP1 P o IPs

s
E"(s)= E,(Ox)(-1) (%} e/’

—JjPs —Jjps
E'(s) = EO(—l)(ﬁj - =_F [ﬁj ¢

2) s 2) s
2
B o 2 a EO
c=im| 47 s _(S)z 5471522 Sz =ra
ST |EZ(QR) |Eo‘
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Two-Dimensional
Scattering from
a Curved Surface
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[Line Source Near a 2-D Curved Surface

Line source Line source

Pa
Center of
Caustic surface
\l Center of curvature
surface
curvature
(a) Reflection point  Fig. 13-8  (b) Caustic
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vV Vv
P P>

\(pl’ -I-S) (p; -I-S)

¥

pL=p

A —

r ,
Pr =X \
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E()=EQ) R [Pl o
(pl} +S) (,02’ +S)

E'(s)=E'(Q,) ‘R 2 o~
\(p{' +5) (1+Sr]
P>

,05—>0C= | - . |
E'(s) = E(Qy) ‘R J £ e 1P (13-29)

p1=p'

1 1 2
7'_ +

P _,00 P, cost

(13-30)
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Strip

Geometrical
Optics (GO)
Image Theory

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



Example 13-2
Reflection From
a Flat PEC Surface
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Example 13 -2

An electric line source of infinite length and constant current 7, 1s
placed symmetrically a distance /2 above a PEC strip of width w
and infinite legnth, as shown 1n Figure 13-9a. The length of the line
1s placed parallel to the z axis. Assuming a free-space medium and
tar-field observations (o > w, p > h), derive expressions for the
incident and reflected electric field components. Then compute and
plot the normalized amplitude distribution (in dB) of the incident,
reflected, and incident + reflected GO fields for 2 = 0.50 4 when

w = infinite and w = 2. Normalize the fields with respect to the
maximum of the total GO field.

Solution:

It follows.
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Line Source Above Strip
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Reflection from a Flat Surface

Source P P,

e — OO
’ ’ -, —
-,

" EN =E'(Qp) R ASF e "

7 —

Imag‘e (Virtual, Caustic)
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Line Source: Coordinate System

b 4 A P;

Line source

h
: ‘ d
\ =
L d PL Lus >
2 2
Fig. 13-9(a)
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Retlection from a Flat Surface

®

2
Vi ©
Line |
Source s S ©)
(‘
h i
A A R
\~ X

l®I/mage (Virtual, Caustic)

Chapter 13

Copyright © 2011 by Constantine A. Balanis
Geometrical Theory of Diffraction

All rights reserved



Region Separation

I11
Regions  Range (¢)

| a<P<r—«
11 T—al¢pinr+a,2rn-al9pLl2r, 0{¢p<a
11 T+a<¢<2r—-«a
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Reflection Geometry

Pi

-~ N
/// h \ i
~
-~ o .
-~ < m
\\ ol
\\
L w > \ .
2 ¥
/7

Fig. 13-9(b)
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N T
E (s)=E () \/(,01; +S) (,0; +S) €

E'(5)=E Q) R L
\ (pl" +s) (1+i]
P

| p§ 0 N pr |
E'(s) = E(Qy)-R . e’
plrzpr (p + S)

11 2
r +

P P, pacosd
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-~
pizp—hcos(z—cb}p—hsmsﬁ -y
- > For ¢ variations

D =p+ hcos(%—¢]:p+hsin b _

Pi =Py = ,0} For amplitude variations

E'=E'+E.=a_ E,(2j) sin(phsing) =
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GO Patterns: Infinite and Finite Strip

w=2A h=0.5\
Total field

w=2A4.h=0.54

90° — = |ncident field

180°
210° 330°
-10 dB
240° 0dB 300°
2700 Fig. 13-10
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Geometrical Theory
of Diffraction
(GTD)
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At high frequencies diffraction, like
reflection and refraction, 1s a local

phenomenon, and

it depends on:

1. The geometry of the object at the
pomt of diffraction (edge, vertex,
curved surface)

2. The amplitude,
polarization of

phase and
the mncident field at
raction

the point of dif

Copyright © 2011 by Constantine A. Balanis
All rights reserved

Chapter 13
Geometrical Theory of Diffraction



. The diffracted field 1s determined by a
generalization of Fermat’s Principle

. The total diffracted field at a point
1s the sum of the rays at that point

. The phase of the field on a ray 1s
assumed to be equal to the product
of the optical length of the ray from
some reference point and the wave
number of the medium.
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Diffraction by a Curved Edge

Obseryation
point Diffracting
' edge
¢/
| &«
K | //
: S I
Diffracted , |
ray % I
By |
P
s Op
n
s o |
s :
|
I
|
Source !

o | Fig. 13-11
(a) Diffraction point
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|[VE+BE=0
V-E=0
<Ed (5)= A(0') o IAv() \/ PP o P
LB 1N (pi+s)(p.+c)
E4(0)
Ea’ :Ed OI pc:pc —JpPs
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lim [Ed (O’) \/ij = finite (13-33)

pe—0

lim | £°(0')Jp! |=E'(Qp)-D 3339

pc—0

Theretore

Ed (S) _ Ed (O’)J( P.P. o IBs

ol +S)(,Oc +c)

E*(s)=| E*(0'){p! | 7 +S§ Epc +C)efﬂs
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p.—0

£ (o)~ tm (£ OWF o i

r €

—Jps

. s(A, +S), (13-34)
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E'(Q,)= incident field at point of diffraction Q,

A

D = dyadic diffraction coefficient
A(p,,s)= amplitude spreading factor
e ’” = phase factor

p, = distance between the reference O, (ats =0) at

the edge (also first caustic of the diffracted rays)

and the second caustic of the diffracted rays.
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Diffraction by a Curved Edge

Source

Fig. 13-11

(b) Astigmatic tube of rays
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Diftracted Fields

d i i —JPs
) Z{E(Qd)' D 54(,00,S2€_ii (13-34a)

Vv ’ Diffraction A \1’ q Phase
Field Coefficient A2Mpitude  pa.ior
at Reference Spreading
Factor

E'(Q,) = incident field at reference

point O, of diffraction
D = dyadic diffraction coefficient
A = amplitude spreading factor

e’ = phase factor
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Amplitude Spreading Factor

p.+5)

A(p,.,s)= spatial attenuation

A(p,.s)= \/S( Pe (13-34b)

(spreading, divergence)
factor for curved surface
p. = distance between reference point O, (s = 0)
at the edge (also first caustic of the
diffracted rays) and the second caustic
of the diffracted rays.
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Diffraction by a Wedge With Straight Edge

Observation

point Straight

diffracting
edge

Op

Fig. 13-12

Source \/
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For A Straight D1

&

racted Edge

Ed

1
T
1
7

e

Copyright © 2011 by Constantine A. Balanis
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A(S,S') =<

—~

S

(s)=E'(Q,)-DA(s,s")e

(13-35)
for plane and conical
wave incidence (13-352)
for cylindrical wave
T (13-35b)
incidence
s>s' \/s'  spherical wave
Al (13-35¢)

incidence
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~

Taction

"(P)=E(Q) e

Two-Dimensional Di

| &

E'(Q)=incident field at diffraction point

'S

= diffraction coefficient

= ASF (cylindrical wave)

1
7
e /¥ = phase factor
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Amplitude Spreading Factor (ASF):

i
NP

= amplitude spreading factor:

cylindrical wave
L amplitude spreading factor:
r

spherical wave

1 = amplitude spreading factor:
plane wave
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Line Source Near a 2-D Conducting Wedge

‘o Observation _———""—"—_ RSig,'gé't I
3 peait Reflected
'?e\f]e\\ p 7 Dl-f'ec[. - lefracteg
c’/bo\{ N
('gbed\\ \
Sejohf b B 0 \
,/ %, Source '\
|
l DN ~
Region || ¥ O
Direct
Diffracted
.\ WA=QR2-n)r

(a) Region separation Fig. 13-13(a)
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Line Source Near a 2-D Conducting Wedge

Observation

Source

, WA = (2 - n)n

(b) Coordinate system Fig. 13-13(b)
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Wedge Diffraction: Normal Incidence
Wedge

Edge

Plane of
diffracted

rays \

Incident

ray s

Fig. 13-14
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Diffraction
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Diffracted Fields
Ed = Ei (Qd) .DAe 7P (13-35)
E'(Q,)= incident field at
point (), of diffraction

e

D = dyadic diffraction coefficient

A = amplitude spreading factor
e ' = phase factor
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Table 2.2 RCS OF SOME TYPICAL TARGETS
Typical RCSs [22]

Object RCS (m?) RCS (dBsm)

Pickup truck 200 23
Automobile 100 20
Jumbo jet airliner 100 20
Large bomber or

commercial jet 40 16
Cabin cruiser boat 10 10
Large fighter aircraft 6 7.78
Small fighter aircraft or

four-passenger jet 2 3
Adult male I 0
Conventional winged

missile 0.5 =9
Bird 0.01 =20
Insect 0.00001 =50
Advanced tactical fighter 0.000001 —60
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-

F-117 Nighthawk

Printed with ession from Lockheed Martin.
Fig. 13-1
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Wedge Diffraction

1. Electric Line Source
2. Magnetic Line Source
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1. Electric Line Source (TM?)

(Horizontal-Soft Polarization)

@ 1

E;=-—ul,G = H'=—+=VxE" (1336
: — jou

2. Magnetic Line Source (TE?)
(Vertical-Hard Polarization)
m a) m 1 m
H =+—¢l,G = E =—VxH" (1337
4 jwe
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If pp'islarge (fp

ﬂ" > [2 -ws) (13-39)

m/n ﬁp

G(p.p.9.¢) = /ﬂ ;p,e_j"*ﬁ " g (Bp) (13-40)

o oo 2 (6-0)
F(pp)= Zm (o) © (13-40a)
=0 icos{ﬂ(¢+ ¢')}

. n /

+ For Hard (TE®) Polarization (Neumann B.C .'s)(@G/ OP|uedee = Oj

swrface

wedge
swface
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— For Soft (TM?) Polarization (Dirichlet B.C .'s)[G



L m(zj cos[%(¢—¢')}
= 2ol wn (BP)e
" =0 icos{ﬂ(¢+¢')}

. b m=0 (13-404a)
012 m=#0

If fp<l, = 15terms (m=0,...,14) for

5 significant figure accuracy
If Bp <10, = 40 terms (m =0,1,...,39) for

5 significant figure accuracy
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Diffraction Patterns by a Wedge-TE*-Hard

90°
120° .
‘ =110 i~ 2
O
pe)
m
= g
150° | g__zo 30° 2|00 2 e ————— n == 1.5
2 8
> 2
' ®
=
o

WAVA
‘2;%‘9“ T i
" "" WA =2 -n)r

Copyright 2011 © by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction

Fig. 13-15



Diffraction Patterns by a Wedge-TM=-Soft

SR T
RIS,
oLV p=30

<X ﬁ"v"" WA =(2-n)z
I

Copyright 2011 © by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction

Fig. 13-16



LS g (o) feos | 2 (- [ cos] 29+ |

mO

(13-40a)

1 m=0 1338
s = -
" 2 m=0 ( 2)

If fp <1, =15terms (m=0,...,14)
for 5 sign. figure accuracy
If pp <10, =40 terms (m=0,1,...,39)

for 5 sign. figure accuracy
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&

Taction

Reciprocity in Wedge Di

Observation
Source Source Observation

(a) Plane Wave Incidence (b) Cylindrical Wave
Incidence
Fig. 13-17
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GTD
Development
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e Watson Transformation

* Method of Steepest Descent
(Saddle Pomt Method)
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Simplification of F(fp)

1. Watson Transformation
Transforms an infinite series
summation into an integral

2. Method of Steepest Descent
(Saddle Point Method)

Evaluates the integral by deforming
the actual line mtegral path to that
of the steepest descent
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If fp'islarge (fp

)22 ) (13-39)
ﬂﬁp

G(p.p8.¢) = /ﬁ;p,e_j;“ﬂ "3 g (Bp) (13-40)

o oo 2 (6-0)
F(fp)= Z T (Bo)e 2 © (13-40a)
=0 icos{ﬁ(¢+ ¢')}

. n /

+ For Hard (TE®) Polarization (Neumann B.C .'s)(@G/ OP|uedee = Oj

swrface

wedge
swface
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Standard Method of Steepest Descent

¥ o369
,6’,0) = Z . m/n m2) N e~ Lopp (,Bp)
o +cos [—(¢+¢')}

Lspp (,3,0) - J. H (Z) "z

SDP

fo —large
27
I, (Bp) = \]—,Bph"(z )H(zs) ") provided h"(z,)#0

dh
—|,., =h'(z=2z,)=h"(z,)=0; z, = Saddle Point
dz "=
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The evaluation of F(fp) will be
accomplished 1n two step. That 1s:

F(fp) = F\(bp)

Copyright © 2011 by Constantine A. Balanis
All rights reserved

Fy(fp)

Chapter 13
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It will turn out that for the functions

F(pp) = F(Bp) + I,(bp)

simple poles (no branch points, ¢tc.) occur at

2, == (9= ) +2npN for F(fp)
2, == (p+¢)+2mpN for F,(fp)
and can be evaluated using the conventional

Steepest Descent Method provided that
-T< z,=-(9pF @) +2npN <+7
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Steepest Descent Paths, Saddle Point, and Poles

YA
| |
| |
: |
Y + z plane
I
| |
| |
\\C C )
-2 -37/2 B —1
* ° * *——% . * *—X >
- e L] 3772 27 X
[ C* G \‘
| |
I
I !
| |
I I
I I
I
(a) Contours for Bessel function Fig. 13-18
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[t will also be shown that the saddle points
are given by

z, = T
When the poles are far removed the saddle
points, then the evaluation along SDP,__
and SDP _ can be evaluated using the
conventional steepest descent method for

1solated poles and saddle points.
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The evaluation of F(5p)

F(pp) = Fi(pp) + F5(Sp)
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1. Evaluating /;( [p) along SDP. _ leads to
incident diffracted field.

2. Evaluating I, (Bp) along SDP, _ leads to
reflected diffracted field.

Both are valid provided observations are

not made at and near, respectively, the
[SB and RSB.
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[t the poles
z,=-(¢F¢')+2npN
arc near the saddle points
Z =XIT
then the Pauli-Clemmow modified
method of steepest descent must

be used.
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Shadow Boundaries
and Transition Regions
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Watson Transformation
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'm 0

F )= 500, () oo () || (94|

(13-40a)
1 m=0
s = ;
- 5 = 0 (13-38a)

If fp<l, =15terms (m=0,...,14)
for 5 sign. figure accuracy
If Pp <10, =40 terms (m =0, 1,-..,39)

for 5 sign. figure accuracy
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m - 1| =&  -j=¢ -
COS ;5* =5 e" +e " |, {T=9F¢
- - (13-42, a)
m T
1 j{ﬂp COS :+(:—ﬂ
Jﬂ(,Bp):—J.e "2z
" 27 (13-43a)
or
m T
1 j{ﬂp cos :——(:+—ﬂ
I (Bo)=o-|er T
W 27 '
(13-43b)
Copyright © 2011 by Constantine A. Balanis Chapter 13

All rights reserved Geometrical Theory of Diffraction



Steepest Descent Paths, Saddle Point, and Poles

Jy A
| |
| |
| |
' A
Y z plane
| |
| |
| |
\\ C c )
-2 -3m/2 B ———
% >
S ~ & J 1
P 302 |2« t
[ C* G’ \‘
| |
| Y
I
| |
I I
I I
I
(a) Contours for Bessel function Fig. 13-18
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F(Bp)=1(Bp.¢—¢'.n)xI1(fp.¢+¢".n)

(13-44)
F 1 ],chos_ ] (f++'
I(Bp. & n)=—— S
27m o
(13-44a)
+ — 1 jem”“’s‘Ze J"(fm)dz
27zn =0

E =g o
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1 2 3 - m
— =x(1+x+x + X +...)=Zx

1-x m=1
1 i o (13-452)
— =14+x  +x T H+x 4. = Zx""
1 — X m=0
1 ej(gf“t +z)/2n (13-45b)
1_ e—j(éﬁ +z)/n - ej(f$+z)/2n e—](f$+z)/2n
_ 11 cof /9‘31 +z) (13-46)
AT
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G(p.p.¢.9) = e 4-JF(ﬂ’p) (13-40)

F(,Bp)= 1. Icot (¢_¢’)+Z e/PP 2 gy

4 jn 5 2n J (13-47)
] +@')+ S cos
+ j cot (¢ ¢) : e’PP e iy
4 jn i 2n
1 l(z hy (z
F H (= Bphy H ﬁp
(,Bp) 47 jn -[ 1( ) 477]71 j.
(13-48), (13-48a), (13-48b)
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F(Bp)=F(Bp)+F(pp)

1 (p—@)+z ]| .,
_ . j cot (¢ ¢ ) ejﬂpcos;dz
drjn ;. | 2n |
E&fp)
] (d+d)+z ]| .
e L[ oot )2 oy,
drjn 2. | 2n i
FzCBP)

Copyright © 2011 by Constantine A. Balanis
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Cr=C"+SDP,,—-C+ SDP_,
or
C'-C=Cr-SDP,, - SDP_,

(13-49a2)

Cr = Closed path

SDP. , = Path along saddle point + 7
SDP._, = Path along saddle point -7
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Steepest Descent Paths, Saddle Point, and Poles

C
SDP__ [ ¢ SDP, ,
Cr=SDP,,~C ST T\*\ﬁ s
+SDP__+C i I
I
CT ------- E E
(1' (!I R R :T :
1 e
SDP._, Y ﬁ Episne
1
SDP_, '
~a R _'/,'/”,
-2
* ° » >
3n/2 2 X
U
iR
It
Hin
!
I
'JT :
]|
Y |:
Hin
1t
Cy h\ Cy ) : .
AN TR Fig. 13-18
= C C SDP, ,
(b) Steepest Descent paths, saddle points and poles.
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Evaluate Along Closed Path C;
Using Residue Theory
(complex variables)

This Leads to GO
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Evaluation Along SDP, _and SDP_,
Leads to
Incident and Reflected
Diftracted Fields
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F, (,Bp)

H (z)=cot

H,(z)=cot

=F (Bp)£F,(pp) (13-48)
j H,(2)e" Oz (13-48a)
477] o
j H,(2)e™?d; (13-48b)
47z]n
(¢_¢)+Z = cot o t+Z (13-48c)
i 2n | - 2n
(¢+¢)+: = cot 5 T (13-48d)
i 2n | - 2n
h(z)="h,(z)= jcos(z) (13-48e)
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Then

n(z 1 n(z
c_f>H P2 g, _ . j‘ H, (Z)eﬁpil(-)dz
47 jn; 41 jn o
| _
+ — I Hl(z)e’gphl(‘)dz
47 jn P
1 i
+— I H, (z)e"Pdz
47Z-jn SDP. .
7 (13-49)
CT = (C'+ SDPM- C + SDP_E (13-49a)
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Evaluation Along C'- C = C,- SDP. .

_SDP. _

1

drjn 7 .

Copyright © 2011 by Constantine A. Balanis
All rights reserved

n(z 1
J. Hl(z)eﬂpl( \dz = Py iHl(z)e

Bph(z) =

: j H, (z)eﬂphl(:)dz
47r]n op
'.. H ,3,0]71 )d
47z]n e
(13-50)
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Therefore for 1’71 (o)

F(fp) = 4@7 j H,(z)e”" )z

— 47”'” st H, ( Z) e/)’phl(-’) Jdz

J. H ,3,0]71

4ﬂ]n SDFs (13-50)
J‘ H ,Bphl

47z jn sop.
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Simarly for F,(fSp)
1

F = H. (z)e"9 gz
2(1810) 472_].” _‘. 2( )
@H ")z
477 jn;
j H ph
47z jn P
I H ﬂph
472' jn op.
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Summary

j' H ph1=3(z)dz ﬁp—;large 1 27

47 jn SDP. _ 4rjn —,Bphl"2 (z = +7Z')

: _]ZH ( = +ﬂ)e'8 ph 5(2=+7) (13-60a)
[p—large
4 1- ,[ f, (Z)eﬁph-’(z)dz s 1 1. \/_ h"27z —

TJN spp TN Boh/, (Z — ﬂ)
i 13-60b
o I lez (Z — —72') e,Bphl:_,(z:—;z) ( )

"Residues of Poles

| @Hl‘p_ (Z)e,b’phz(z)ck _ 272_]2 cs1aues O oles (13-51)

dzmjne - > | Enclosed by C;
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Evaluate
F(pp) = F1(fp) + F2(Lp)
Along Closed Path C,
Using
Residue Theory
(complex variables).
This Leads to GO
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Consider: Poles enclosed by C',

@H Z /3,0]71( )d
Az jn ; (13-52)

l @Cot (¢_¢)+Z ejﬂpcoszdz

Arx jne 2n

Cﬁ H ,397? d.
4ﬂjn

PR ICIT

Ax jn e 2n
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Evaluate (13-51)
Fi(fp)
Along Closed Path C;
Using Residue Theory.

This Leads to Incident GO
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Poles enclosed by C,

From complex variables:

L §H,(z) e O
Cr (13-51)

= ZﬂjZRes(Z =Z,)
P

, .Z_Residues of Poles
=27
/ ~| Enclosed by C;
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Poles enclosed by C,

(13-52)

— 1 @CO'[ (¢_¢)+Z ejﬂpcoszdz
4 jn 2n

Cr _ _

The cotangent function has poles when

—¢')+z
- , - COS (¢ ¢ )
(p—¢')+z 2n
cot = = = = o0
2n | (p-¢)+z
B B S11
2n
— —lz=z,
Copyright © 2011 by Constantine A. Balanis Chapter 13

All rights reserved Geometrical Theory of Diffraction



Poles enclosed by €.,

Poles when denominator

SIin (¢ —¢ ) - -0
i 2n ...
(9-9)+: = 7N, N=0,+1+2,... (1333

] 2n 1.

(¢—¢')+:p =2nx N (13-53a)
z, :—(¢—¢')+2n77N:>:p =—-&" +2mnN (13-53b)

—7Z'S.Zp <4+m| or ||z |
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Poles at
zp=-(¢—¢’") + 2mN

For N=0
zp=-(¢—¢")
which are along ISB

Copyright © 2011 by Constantine A. Balanis Chapter 13
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Evaluation of F,(fp) Along C..

' Residues of Poles

F =27 :
(Bp) CPCT ﬂj;_ Enclosed by C, Y

Poles occur at
z, = —(¢—¢')+27mN (13-53a)
Also for C; as chosen

-n<z,=—(¢—¢)+22nN <+7x (1330
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_ (=)t 7| e
Fl(,B,o)ci)C = — cﬁcot - e dz

1 I - ’+Z— ' bpcosz
F (Bp) CiDC :4547;]'11 cot (¢ 2¢n) R

N(z)/D(2)

F(Bp) CPCT = <]S gg; dz (13-52)

Cr
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N (:) _ 1 cot (¢ _ ¢’) Tz ej,chosz
D(z) 4zxjn | 2n
COS i (¢ _2¢') +z) p /PP cosz
14/
__ L ! (13-52a)
47 jn sin (¢_¢ )+
N (z)=cos (4 _2¢') e g/ PPeosz (13-52b)
14}
== - ) » )
D(z)=4xjn sin (4 _2¢ )+ (13-52¢)
14/
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(13-51)

F(Bp)d. = 9} ];8 d-

= ZﬂjZRes(zp)
P

provided that

<
|ZP ‘—”
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For simple poles (no branch points, etc.)

N(z)
R _ (13-54)
eS(Zp) D'(Z) z=z,=—(¢—¢")+27nN
where
, dD |z
P (Z) “Tp N dg )



_(¢_ ¢') +z 7Bp cosz

z=z,=—(4—¢')+27nN 2,

e
b T e

p

— COS [ﬂ'N] o PP cos| (¢4 27N ]

N (Z N Zp) =cos(zN)e” cos| ~(¢-¢')y+27nN |
(13-54a)
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D'(z) :dD(Z) :ii4ﬂjsin (¢_¢)+Z >
2=2p a | _  dz| ] 2n Ul
D'(Z) =4ﬂjncos (¢_¢)+Z
2=2p 2n i 2n ..
: - (p=9)+2 ]
D =2
(z)Z:Zp T j cos_ e
D'(z) . 27 cos(zzZN) =27 jcos(7N)
D'(z = zp) =2mjcos(7N) (13-54b)
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1<z =—(¢p—9")+27nN < +rx
y=—(4-9)

WhenZ:zp:Mz:

z,=—(¢—¢")+27nN" =+x
27nN" —(¢p—¢') =+

Whenz:zp:—ﬂ:

z,=—(¢—¢')+27nN" =7
27nN~ —(¢—¢')=—x
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., Dlz=z)

cos(7zN) g/ P oo ~(9=¢)y2anN ]

- 27 jcos(zN)

1 Bp cos| —(p—o' nN
Res(zzzp)— .ejf)’p | ~(¢—¢')+27nN |
272'] (13-55a)
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Therefore
1
F(pp)0. =

T 47ZanT

H, (z)eﬂph](z)dz = 277]2 Res(z=1z))
p

: ] Bpcos| —(g—¢')+2anN ] (13-55b)
27T]ZR€S(ZP)=27Z'] ;ejp 59 ]
p J

z=1z, =—(¢- ¢)+27an<7z
E(fp) . =2y a | (6 )+ 20nN]]

(0 1<t
where U7 —1,|=41/2 t=1, (13-56)
1 1>1,
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The unit step function 1s mtroduced in (13-55b) so that (13-53b)
—-7<z,=—(¢—¢')+27nN < +x (13-53b)
is satisfied. Whenz, =+7, (13-35b) is expressed as

27nN" = (p—¢')=+n for z =+7 (13-57a)
and

27nN~ —(p—¢')= -7 for z,=-7 (13-57b)
For the principal value of N (N* = 0), (13-55b) reduces to
F), = -e)]

This 1s reterred to as the Incident GO
and it exists if‘(g/ﬁ - ¢’)| <.
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Using Same Procedure Evaluate
E5(6p)
Along Closed Path C;,
Using Residue Theory.
This Leads to Reflected GO
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Simarly for F, ( ,Bp)

F,(Bp CT 47”” <JSH ) e gy = 27;/; Res(z=z,)

21 Z Res(z p) =27 % /PP o ~(¢+4)+2anN]

z=z,= —(¢+¢')+27[1;N£7r
F (o), = U U 7 - |- (g+ ¢) + 27N

(0 1<t
where U|r—1,|=1/2 1=1,
1 >0
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The unit step function is introduced in (13-55b) so that (13-53b)

-7<z, =—(p+¢')+272nN < +x (13-53b)
is satistied. Whenz =7, (13-55b) is expressed as
27nN" —(g+¢')=+rx for z,=+n (13-57a)
and
27nN~ —(p+¢')=-7 for z, =-7x (13-57b)
For the principal value of N (N* = 0), F, ( fp) reduces to
E,(Bp) .= P nad) {U[ﬂ — |—(¢ + ¢’)|] (13-62b)

This 1s referred to as the Reflected GO
and it exists if |(¢+¢')

Copyright © 2011 by Constantine A. Balanis Chapter 13
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Evaluation of

F(ppy=F\(pp) £ F,(Lp)

Along Closed Path C;
Using Residue Theory.
This Leads to Total GO
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Therefore, combining both F, (o) + F5,([p) = F(Bp)

F(,Bp)q) — 2ﬂ]ZRes( ) 27 L.ejﬁPCOS[—(gzﬁi;zﬁ')ﬁLzmw]

27 ]

z=12, =—(¢xtg')+27nN <7

F (,Bp) CPCT ],chos[ +¢)+27nN | <

where U1 —t,] =+

Copyright © 2011 by Constantine A. Balanis
All rights reserved

Uz -|-(¢-¢')+22nN|]

or

fﬂ}r—k(¢+¢j+2ﬂnNH

0 r<i,

/2 t=1
1 t>1,
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which for the principal value of N (N* =0) reduce to
( PP cos| ~(¢-¢')|

Ulz—(¢-¢')] for |[(¢—9¢)

Incident Geometrical Optics

<7

PP cos| ~(¢+¢') |

Ulz—(¢+9')] for |(¢+¢)
Reflected Geometrical Optics

<
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( PP cos[—(¢—¢')]U

1| Gipeo[ -0+ T . ~(¢+¢)

PN~ (p—-¢)] for (9—¢')<x

Incident Geometrical Optics

P (p+¢)] for (p+¢)<7
Reflected Geometrical Optics
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Geometrical Optics Field

el dr Ug) Region
e G L G R Py POy
F(Bp)=1 &7t 0  g—¢'<p<m+¢
0 + 0 7+¢'<gp<27-WA
k nr
(13-65)
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Line Source Near a 2-D Conducting Wedge

‘o Observation _———""—"—_ RSig,'gé't I
3 peait Reflected
'?e\f]e\\ p 7 Dl-f'ec[. - lefracteg
c’/bo\{ N
('gbed\\ \
Sejohf b B 0 \
,/ %, Source '\
|
l DN ~
Region || ¥ O
Direct
Diffracted
.\ WA=QR2-n)r

(a) Region separation Fig. 13-13(a)
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Shadow Boundaries
and Transition Regions
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Keller’s Diffraction

1. Dif

Taction Functions

2. Dif:

Copyright © 2011 by Constantine A.
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Taction Coefficients
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Evaluation
Along
SDP., _and SDP_,
Using
Method of
Steepest Descent
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Therefore the contributions of F'( fo)
along the SDP, _ are

F(Bp) o =F (o), £F2 (S0,
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1 I o '+Z_ ' Bp COS z
Fl(ﬁp)‘SDP:: . j cot (-¢) e’ dz

SDP. -

2n

Copyright © 2011 by Constantine A. Balanis
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1 j cot_(¢_¢’)+z—

2n

Chapter 13

ejﬁpcos:dz

(13-61)
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E ()., =|- L | cot (B9)+2 | sz g

- SDEer drjn 3, 2n
— ' p— ]
- f cot ($+9')+= e’ dz
drjn o5 | 2n | ]
(13-62b)
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Evaluation Along
SDP,  and SDP_,
Leads to
Incident and Reflected
Diffracted Fields
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When the poles are far removed from
the saddle pomts, the evaluation of the
integrals along the SDP- paths can be
performed using the conventional
steepest descent method. This leads to
Keller’s diffraction functions and

coefficients which possess singularities
along the ISB & RSB.
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The poles are given by
z,=-&" +2npN
with -7< z <+7x
The saddle points are
given by

Z =XIT
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Consider: Contributions Along SDP__ and SDP __

1

j H,(z)e""¥dz =

4r jn -~
_ ' —
1 j‘ COt (¢_¢ )+Z ejﬂpcoszdz
Az jn 3, i 2n |
|
. J. [{1 (Z) eﬂplh(-)d _
Az jn s,
_ ' —
1 j‘ COt (¢_¢)+Z ejﬂpcos:dz
drjn 5, i 2n |
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Consider: Contributions Along SDP__ and SDP __

1

47 jn j Hz( ) " dz =

SDP.
_ ' _
1 j‘ COt (¢+¢)+Z ejﬂpcoszdz
Az jn 3, i 2n |
|
. j H,(z)e""Pdz =
Az jn s,
1 (d+d)+z ]|
. j cot (4+9) e/P % dz
drjn 5, | 2n |
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Evaluation of

F\(Bp)/H\(z) and F,(Sp)/Hy(z)

Along SDP, .
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Evaluation of

F(pp)/H, (2)

Along SDP, .
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Consider: Contributions Along SDP,

y j H ﬂphl(f)dz —
72']7’7

SDP. .
1 (=) +2 | e
(R ILE
4 jn or. L 2n i
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J‘ H, ( Z) Ph(2) 1,

pp—>x 272' B
=~ » H (z.) |- e"P"(=)
Z‘ l(')\/ Prhl(z,)

provided poles of H, (z)are not near saddle points

H, (z)=cot ($-97)+= = cot o +z

i 2n ) - 2n
ET=g-¢’
h(z)=jcosz
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To find saddle points:

dh, (z)
dz

—0=—/sinz,

~ o d

V4 LS

—>z =sr,s=0,£1,£2,...
Create Steepest Descent Paths (SDP),
SDP _ and SDP __, passing through
saddle pomnts z. = -7 and z, =+7
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Evaluation of

F\(pp)/H,(2)

Along SDP.

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



1

J. [_I1 (Z) eﬂﬂ’ﬁ(z)dz

SDP, .

47 jn

= 1. j cot (9-9)+- e/ dz
47 jn 2n

27
I\ ~Pph)(z=+r)

/- hy (z=
,e+Jﬂ/4[_]1 (Z _ -|-7Z') pPh(z=+7)
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1
47 jn

. /



_(¢_¢’)+ﬂ_
2n

_7Z'+(¢—¢’)—
2n

H, (Z = +7Z') = cot

= cot

h(z)=jcos(z)= h(z=+r)=jcos(+7)=—)

h(z)=—jsin(z)
h'(z)=—jcos(z)= hl(z=+7m)=—jcos(7)=+)
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1 j Cot_(¢_¢')+z_ejﬁpcos:dz
41 jn or. L 2n |
- 3 \/_2—7T €+j”/4cot_ﬂ+(¢_¢,)—
4rjn | jpp I 2n |
_ | 27Te+jﬁ/4cot 7Z.+(¢_¢) 0
41 jn \/ Lo i 2n |
T ey
= cot
2n\/27r,8p i 2n |

Copyright © 2011 by Constantine A. Balanis

All rights reserved

Geometrical Theory of Diffraction

Chapter 13

—JjBp

—Jpp

(1)




Evaluation of

Fy(fp)/Hy(2)

Along SDP._
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Stmilarly:

47 jn SDP..

R

) 2n\/27z,6’p

2n

cot

Copyright © 2011 by Constantine A. Balanis
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1 j - (¢+¢')—I—Z

ej,b’pcos:dz

T+(p+d)

2n

Chapter 13
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Summary [(1)+(2)] SDP, .: GTD

: I cot (¢_¢')+Z

ejﬂpcoszdz
41 jn or. L 2n i
_ e cot kS ($-¢') e
oa2zp | 2n | p
1. J cot (¢+¢ )+Z e/ PPeos? -
41 jn wr. L 2n i
B e /N _7T+(¢+¢')- e /PP

Wcot_

2n _\/;
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Evaluation of

F\(pp)/H,(2)

Along SDP
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: I cot (#=¢)+z e/ PPz 7

27
|\ -Bohi(z= 7)1

. o~ 137/4 Ppi(z=+7)

. S

- 41 jn
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(p-¢)-7

H (z=-r)=cot

- 2n —

_ cot| = (94
- 2n -

eof| F2 09
- 2n —

h(z)=jcos(z)=>h(z=-m)=jcos(-7m)=—]
hl'(z) :_jSin(Z)
h'(z)=—jcos(z) = h'(z=-m)=—jcos(—7) =+
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1 J' COt_(¢_¢')+Z—€jﬂpCOS:dZ
4 jn spp, L 2n .
| \/_2_,,
_ Jkp
4z jn L e oot 7T_(¢_¢')
. - 2n —
B o7 COt_ﬂ_(¢_¢ ')_ o 1P
2n\27p | 2n i \/;
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Evaluation of

F5(fp)/ Hy(2)

Along SDP
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Stmilarly:

: j- cot (¢+§ )+ 2 e/ P
14/

sop. L _
e—jﬂ/4 _ﬂ_(¢+¢')—e_j'8p

) 2n+270 COt_ 2n ) \/; (4)
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Summary [(3)+(4)] SDP__: GTD

1. I cot (9-¢)+= e/ PP -
4ﬁ]n5w%f i 2n i
o T (¢ _ ¢')‘ o PP
- ot 3
20273 T Jp )
1. J. cot ($+4)+= e/ PPeos? -
4ﬂ]n5&RI i 2n i

, '_27Z'ﬁ cot _

_ﬁ—(¢+¢0—eﬁm

| @
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Evaluation of:

1. Fi\(Bp)/H,(z) Along SDP,  and SDP_,
[Leads to Incident Diffracted Fields

2. F\(Bp)/H,(z) Along SDP.  and SDP_,
[eads to Reflected Diffracted Fields
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Summary [(1)-(4)] SDP, + SDP . GTD

17/4

—Jﬁp

F(ﬂp)|SDP:I - In /272- \/7

I+

—

< | cot

r+(p+4)

z+(p—¢)

2n

2n

F,(Bp)

+ cot

F(fBp)
SDP:+rm

+ Ccot

~(p-9¢')

~(¢+4)

2n

F(fBp)

“SDP+r -

Copyright © 2011 by Constantine A. Balanis
All rights reserved

2n

|52 (Bp)
SDP:—rx |
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‘ ~ cos(x+y)
cot(x+)= sin (x+ )
o cos (x— )
cot(x=)= sin (x— )
Then
cot(x+y)+cot(x—y)= COS(x-I—y)+ cos(x~ )

sin(x+y)  sin(x—y)
- cos(x+y)sin(x—y)+sin(x+y)cos(x—y)
B sin(x+ y)sin(x—y)
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cos(x+ y)sin(x — )
=%[sin(2x) —sin(2y) |
sin(x + y)cos(x— »)
= %[sin(2x) +sin(2y) |
sin(x + y)sin (x — y)

_ —%[cos (2x)—cos (2y)]
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Thus
cot(x+ y)+cot(x—y)

[sin(2x) =sin(2y) ]+ - [sin (2x) +sin(2)

_%[cos (ZX) — COS (2y)]

—2sin(2x
COt(X +)’)+C0t(x_y) B cos(2x) —(cos)(2y)
2sin(2x)

COt(X + y) + COt(X - y) - COS(zx) — 005(21”)
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Therefore

cot + cot
2n 2n 2n
— ~—;—'
T + ¢’
cot — ¢ ¢ + cot
2n 2n 2n

Copyright © 2011 by Constantine A. Balanis
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—COS(E)—COS(¢_¢’

2sin[£)
n

2s1in (f)
N

|

COS(Z) —COS(¢ +¢’
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Finally

F('Bp)ISDPU =1 (ﬂp)ISDP:I + (ﬂp)ISDP:I

~

I+
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_irld —j
o jr/ e ipBp

YN

2sin(ﬂj
14}

T
COS| — [—COS
\ n

p—¢'

14

|
ol

n

i

cos(ﬂj — cos(¢ te
i n
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Summary: GTD (Keller)

e—j(ﬁp+ﬂ/4)

F (/Bp)‘SDP:: =k (IBIO)|SDP:: + ('Bp)I‘SDP:‘ o \/—

(

* 3

275p

1 .
—sin
n

B

-+
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Summary
Keller’s Diffraction

1. Diffraction Functions
2. Diffraction Coefticients
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Decomposition of Total Field

E.(H.) ~F(fp)=F, + F,

where

F. =F +F

F, = F +F/

F} = Incident Geometrical Optics Field
F/ = Reftlected Geometrical Optics Field
F} = Incident Diffracted Field
F, = Reflected Diffracted Field
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F(p.p.¢'.n)=1,(p.¢.4.n)
+FD (,0,¢,¢’,I’Z)

(13-64)

I, = Geometrical Optics Field
=F.tF]
I, = Diffracted Field
=F, tF)]
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Line Source Near a 2-D Conducting Wedge

‘o Observation _———""—"—_ RSig,'gé't I
3 peait Reflected
'?e\f]e\\ p 7 Dl-f'ec[. - lefracteg
c’/bo\{ N
('gbed\\ \
Sejohf b B 0 \
,/ %, Source '\
|
l DN ~
Region || ¥ O
Direct
Diffracted
.\ WA=QR2-n)r

(a) Region separation Fig. 13-13(a)
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Regions of GO and Diffracted Fields

Region | Region I Region
05@p<m—¢' |\ m—@'<P<m+¢'| 7+9'<Pp<27-WA
Direct GO Direct GO | = e
Reflected GO | - | = v
Diffracted Diffracted Diffracted
A. Incident A. Incident A. Incident
B. Reflected |B. Reflected B. Reflected
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Geometrical Optics Field

ejﬂp cos(gp—9¢') —

_ ) JiBpcos(¢—¢')
F,(fp)=1e ;
0 +

U Region

ejﬂPC05(¢+¢') 0< ¢ < 7T—¢'
0 T—@¢' <p<m+¢
0 7+¢'<d<27-WA

nrw
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Diftfracted Field
+ F 1; =V,

:V;(IO,¢—¢,,}’Z) ( ¢+¢ )

E =V (p,¢—¢',n)= \/_ (13-66)

Jﬂp

Fy =V, (p,g+¢.n)= \/—
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s | —ina lsin ﬂj
VZ;‘:Fl;:eJP<eJ ] 7 n- '
\/; 27 cos| = |- cos P+9
\ n n
‘ N
—Jpp

VZ; _ rref € Dref

— 4 DIF — \/;

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



Away from Shadow Boundaries

1ﬁn(ﬂj
| e /! n \n
DZ(¢_¢'an): ] r
272-'8 COS (ﬂ.j — COS (¢ — ¢ j
n n
1ﬁn(ﬂj
| e /7N no \n
D' (¢+¢'n)="— . ,
27Z'ﬂ COS(ﬂ-J — COS(¢ " ¢ j
n n
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Away from Shadow Boundaries

e_j[ﬁerZJ 1 T
VBILS (p>¢$¢’>n): _Sin(_)

\27mPBp n n
1 1

4 —+ — b

T — T +
COS| — |—COS ¢ ¢ COS| — |—COS ¢ ¢
. N " 17! " )
(13-67)
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Away from Shadow Boundaries

(13-67)
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Away from Shadow Boundaries

1 . (ﬂ)
~sin| =
n n

1 . (ﬂ')
~sin| &=
n n

] e—jﬂ'/4
D7 = ! + !
273 cos(zj—cos(¢_¢) cos(zj—cos(¢+¢)
i n n n n
lsin 7 lsin r
D= e 7/ n Zi n Zi

COS(Z) — COS(¢ — ¢'
i n n

D'=D'+D
D'=D'-D
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Away from Shadow Boundaries

Vy(p.0.0'.n)=Vy(p.g—¢.n) £V, (p.¢+¢.n)=F(Bp)

1 :
A o (ﬂj o /PP
Vs (p.9—4.n) "

S

1] o) [

27f cos(ﬂJ—cos((b ¢j i’;__,
i n
Vi(p.gp=¢n)=[1] D] [4] [ ]
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AtRSB (¢=7—¢')
p—p=n—-¢'=¢p ' =r-29'
p+p'=m—¢'+¢'=x

At ISB (¢=7+¢")
p—@'=n+¢p'-9'=nx
P+ Q' =m+Q+ 0" ' =n+2¢"'
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=

1 . (»«x
o~ ;Sm(;) o IPP
Vi(p.g+¢'.n)= ,

N27p cos(z)— cos(—¢;¢ ) \/;
i 1 : (7[)
J*r,.u o
_ [1] 7’1 n |
B 7 ol oo £ L2
n n )|
Vi (pprgm=[[ D] [4] [¢77]
ﬂ ; [1] = Amplitude of Incident field at Edge

n
1 —-JjBp
{ P }[ ]
2l
- D', D" =Incident, Reflection Diffraction Coefficient

()

A= % = Amplitude Spreading Factor (for plane & cylindrical inc.)
yo,
4|: e? = phase Factor
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V, = Vl;' +V,
Incident Diffracted Field

( 1 . (~«x \
- oI | oin/ ;Sm > |
B — s B 7 N
\/; V27p cos(ﬂj—icos(¢_¢ j i
! i nj i N n_JL
e
e—jﬁp
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V, = VB" g 284
Reflected Diffracted Field

(

1ﬂn(ﬂj
—~jhBp —jz/4 . o
Vref _ € ) € n n
B \/— - N L LN
27 7T | + |
P P COS| — [—COS P+ ¢ ;
\ i n S n___JJ
[)’,.
—Jpp
. e
ro__ 7
Vy = D
"/10
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Shadow Boundaries
and Transition Regions
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Away from Shadow Boundaries
Keller’s Diffractions Coefficients

lﬁn(ﬂj
—jr}/4 R N
D'(p~¢'.n)= ° L L
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racted Fields

Polarization of Incident and D1

P(p, ¢) . O, ¢ P(p, §) O, ¢)
Hd H
y T
Q) ~ 4
d 7,
E -
E(I
A & '
joad - - -
WA=(2_”)1t WA=(2—”_)T[
(a) Soft Polarization (b) Hard Polarization
Fig. 13-22
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Pauli-Clemmow

Modified
Method of Steepest Descent
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Standard Method of Steepest Descent

el
V(Bp)==2.8. . (Bp)e "

=0 _cos{m (p+¢' )}

pp T-)'lar“ e oy e
Lspp (ﬁp) = —,Bph"(z )H(zs)e |
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Pauli-Clemmow
Modified Method
of Steepest Descent
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Pauli-Clemmow
Method of Steepest Descent

fp—large 2T
I(Bp)=|H(2)e"Dd: = ——H (z, efPz)

x \F[prel}

o0

ot Ihrg j e 7" dr

Vi
g=] [lfz (z,)—" (zp )] = represents separation

F(ppg)=2j |\/ﬁpg

between saddle points and poles
z. = represents the saddle points

z, = represents the poles
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Geometrical Optics Field

1. Incident
2. Retlected
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Incident Diffracted Field

I H ﬂphl )
1 SDP. _
F(Bp).,, =-— _ (13-61)
1 PP Agr jn N J' H, (__) o) g
i SDP, , i
Reflected Diffracted Field
J' H ﬂph )
1 SDP
F, ( ﬁp)l = _ (13-62b)
2 SDE.-  Ar jn N J‘ H, (z)eﬂphz(‘)dz
a SDP, . —
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For Evaluation
Ole (Z)iﬂ'
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1
A1 jn

[ B ()

SDPJ— T

— 1. j (xn_(¢__¢j4_z— Jbpcosz
A jn 2n

SDP. +7T — -

z,|_ =z, =+n
=—(¢—¢')+27nN"
g (&)=¢g"(¢-9¢)
¢ (&)5{jcos(x) - jeos[(#—¢') - 22nN" ]}
g (&) =1+cos|(¢—¢')—27nN" |
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] J‘ cot (¢—¢)+Z ej,chosde
471 jn 2n

SDP,_ - —

PRk —J,BP I/ (¢ _ ¢')

T i R _F[ﬁpg*(e“)]
F| ppg* (&) |=F[ Brg ( 4- #)]

]3 e dr
|\/ﬂpg+(¢—¢ ')|
g (p—¢')=1+ cos[(¢—¢') —27mN+]

where 27nN" —(¢—¢') =

=2 ‘\/ﬁpg‘“ (4-¢)
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SDP._
_ 1 j- oot I (¢ — ¢') +z ] Lifpeoss 7
drjn 3, - 2n
Z|_ =2 =—7
z,=—(¢—¢')+2xnN"

g (&)=g(¢-4)
=j{j cos(—7) - jcos[(¢ —¢') - 27rnN_]}
g (£7)=1+cos[(p—¢)-27nN"]

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



1 j cot (p—9¢')+z p/PPeosz g
41 jn 2n

SDP.__ _ -

. oIl ifp _72-—(¢—¢')— (e
- Zn\/ﬁ \/; o 2n F[,Bpg (5 )J

Flooe (£)]=Foe (-9)]

]ﬁ e 7 dr
Jpog(9-0")
g (p—9¢")=1+ cos[(¢ —¢') - 27mN_]

where 27nN~ — (¢ — ¢') =7

=2j ‘\/ﬁpg‘ (¢-¢)
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For Evaluation
OfH2 (Z)iﬂ'
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1
A4 jn

I H, (z)e""dz

SDPJ— T

1 j cot (¢+¢)+Z ejﬂpcoszdz

A n g | 2n )
Z,|_ =7, =+7
=—(¢+¢')+27nN"

g'(¢7)=g"(¢+9¢)
=j{jcos(7r) — jcos[(¢ +¢') - 27mN+]}
g (/,“) =1 +cos[(¢ +¢') —27mN+}

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



1 j cot (¢+¢)+:
41 jn 2n

SDP,_ - _

—J /4 —Jﬂp

YN R

ejﬁpcoszdz

T+(p+¢")

2n

F| g (£7)|=F[ g’ (¢+¢ )]

=2j ‘\/ﬁpff

(¢+9¢)

F| ppg"(£7)]

e dr

‘\/ﬂpg

g (¢+¢')=1+cos| (¢+9')-
where 27mN+—(¢+¢)—

Copyright © 2011 by Constantine A. Balanis
All rights reserved

L
N |

Chapter 13
Geometrical Theory of Diffraction



1
A jn

[ H,(2)e" 0

SDP.__

_ 1 J‘ cot (¢+¢)+: ejﬂpcoszdz
41 jn 2n

SDP.__ - i

~
Ve
A}

s=1 1

S=—(¢+9¢')+27nN"
g (&)=g (4+¢)
~j{Jcos(~x)~ jeos[(¢+ )~ 22nN"]}
g (&7)=1+cos| (¢+¢')—22nN"|
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: j cot (¢+¢)+Z e!PPeosz g
41 jn 2n

SDP.__ _ _
—jx/4  —jpp T (¢ n ¢')_

_ 2:\/% eﬁ cot_ - _F[ﬁpg_(§+)}
F| ppg (£7)|=F[Brg (4+9¢)]

~2j\[Brg (4+9)

]‘C e’ dr
“(4+9")

‘\/ﬂpg
g (p-9¢")=1+ cos[(¢ +¢') - 27mN‘}
where 27nN~ —(¢+¢')=-7x
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Values of N~ as a Function of £and »

ISB:¢p =1+ ¢’
RSB: ¢ =7 — ¢’

l :
\ N~=0;
\ .
-1\ N =0
\1.5 :
b 2anN —&E=—x
\ . _
\ : 2rnN~ =& —n
\ s
| X I |1 ¢
=27 1 0 1 27 3 4
ik (13-19)
(a) N
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Values of N as a Function of & and n

. 2
: / region for N™=1 that
1\./+ =40 II closest satisfies the
I equation
P = ;| N
. 15—IN+_ . RSB:¢p =2n—-1)m—¢’
ISB: ¢ =¢' — 7 : 27Z'I7N_—§:+7Z
. / 2anN" =&+ 7
| y | | S
=27 —TT 0 21 3t 4
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[f the poles
z,=-(¢px@")+2nxN

are near the saddle points

z =%r1
then the Pauli-Clemmow modified

method of steepest descent must
be used. This leads to UTD.
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Values of N*
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+7T

p—¢')
p+¢')

h —

2anN~ —

N

2xnN" —

y Constantine A. Balanis

iffraction



2rnN~ =& —n
n=1 = 2N~ =& —n
a. E=n1 27N =0=N =0

2. N =1 27r:—5 > —> Closest: N™ =0
_ T
3. N"=-1 —2zx=-Z=
2
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c. £=0 27N =-nx
1. NN=0 0=—x
2. N =1 2n=-nx > = Closest:
3. N =-1 -27r=-—nx

d. £=2n 22N =2n—-rm=nx
I. N =0 0=1
2. N =1 27=xn ;= Closest: N_
3. N =-1 -2r=n1 No=l

N =0
N~ =-1
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27N —¢=—n < 27nN =& —nx

~=0: |&=rx(any value of n)
1

7 ~¢]

1
N =-1:| n= —|=
’ 27z[5 77] 27
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2rnN" —E=+r < 2anN" =6+

1

o 27N" [QZ_HZ]

1
N =1: =
n 27z[§+7z]

N'=0: | £ =—r(any value of n)
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Width of
Transition Region
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Shadow Boundaries and Transition Regions
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g =1+cos(E—27nN")
2inN"—&=+nm (forg™)
g =1+cos(¢c—27nnN")
27nN —¢& =—n (for g’)

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



o and ¢ are representative of
the angular separation between
the observation point and the
ISB or RSB.

In fact, when the observations
are made along the ISB or RSB,

the ¢© functions are equal to zero.
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In order for the Keller diffraction functions and

coefficients to be valid Spg” >>1. This can be
achieved by one of the following conditions:

1. Bp and g~ are large. These are

satisfied if the distance p to the observation
point 1s large and the observation angle ¢ 1s far
away from either of the two shadow

boundaries.
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2. Bp large and g~ small. This is satisfied
if the distance p to the observation point 1s
large and observation angle ¢ 1s near either

one or both of the shadow boundaries.

3. Bp small and g~ large. This is satisfied
if the distance p to the observation point is
small and observation angle ¢ 1s far away

from either of the two shadow boundaries.
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Plane Wave Incident Upon Half Plane

30°

Fig. 13-20
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B

raction

Example: Plane Wave D1

_ n=2

=30

)
L
-
.
L4
e
.
.
...
teu,

.
-
.
‘-
.
.
-----------------
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Incident Diffracted Field

lOO e .
075 — EE
= : # =30
© ..
= ] | e b Keller (p= 1)
o
0 rp — e JTD (p= 1)
s I\
/,- \ seeeeee Keller (p=1001)
/ .I \ e w v | JTD (p = 1001)
025 —
0 -—L-g'—’1
0.0 90.0
Observation angle ¢ (degrees) Flg 1 3_2 1 (a)
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Reflected Diffracted Field
0.75 f—
N ¢ =30°
3 Keller (p=1)
g 00— =======" ——— UTD (p=1)
é" /, ssseses Keller (p=100%)
/0 I\\ e UTD (p=1001)
0.0 90.0 180.0 270.0 360.0
Observation angle ¢ (degrees) Flg 1 3_2 1 (b)
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Shadow Boundaries and Transition Regions
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Uniform Theory of Diffraction

1. Difi

(UTD)

Taction Functions

2. Difs

Taction Coefficients

Copyright © 2011 by Constantine A. Balanis Chapter 13

All rights reserved

Geometrical Theory of Diffraction



Vyt(p,Emy=1__(p,En)+1 (p,&E,n)

Vi (o= —{[c@re)]

€

+H[C©OF©] 5

For Vy=&=¢ =¢-¢
ForV, =&=5" =¢g+¢
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k_ 2HW[C—(¢-¢ )F—(¢'¢ ):'

k_ 2}’1\/% [C_(¢'¢)F_(¢'¢)j|)

e j

v
'

—jz/4
e —]

VAN
'

( _jz/4

o W[C-<¢+¢>F‘<¢+¢>}

(

e

e J

o W[C‘(¢+¢)F‘<¢+¢)}
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C+(§):cot(ﬂ+§); C(ej):cot(ﬂ_f]
2n 2n

(13-69c¢) . (13-69d)

F (&) =2jyBpg () [ e’ dr

gt (&) (13-69¢)

o0

F(&)=2j\ppg (&) | e’ dr
Jpog 6y (13-69)
S=¢ =¢-¢; =5 =¢+¢

(13-71¢) (13-71d)
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J7T4 J,Bﬁ
V' (p.&.n) = NI \F
({[creHFr @]+ eHr )]}
H{c@F )]+ @HrF e
E=g-¢
E=gtg

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



Summary SDP, +SDP__: UTD
e —jm/4 e - Jbp

V] (pgn)__znm \/*
e

+| cot(ZED) F(g-¢)

J
{[cot L (¢+¢')J>
J

[cot ”(¢+¢) F (f+¢")

Copyn'ch 11 by Constantine A. Balanis
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Summary SDP, _+SDP . GTD

17/4 —Jﬂp

F(/Bp)‘SDP: hs(p S n)__zn\/; \/*

cot

All rights reserved

+(¢4-¢)

2n

F (Bp)
SDP:+rm

+ Cot

7-(¢-¢)

2n

+(p+¢") —(p+¢")
| cot (¢ 4 ) + Ccot (¢ ¢ )
2n F, (fp) 2n F, (fp)
3 SDP+rx SDP:—rx
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Incident and Reflected
Diftfracted Fields

e—jﬂ'/4 | .
e H(=52)F (- ¢)
Vi(p,& ,n)= e\/]ﬁp ) 27«/@ {[CO ( ) ] |
! +[eot(ZE2)F (49|
. ; |
( e—jﬂ'/4

[eot(222) P 4+ ]

Vi(p, & ,n)= e 4 _ 2’1\/‘%
7 +[c0t(#)lj_(¢+¢')]}

D’
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racted Fields

Polarization of Incident and D1

P(p, ¢) . O, ¢ P(p, §) O, ¢)
Hd H
y T
Q) ~ 4
d 7,
E -
E(I
A & '
joad - - -
WA=(2_”)1t WA=(2—”_)T[
(a) Soft Polarization (b) Hard Polarization
Fig. 13-22
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— /4
e J

D'(p.¢p—¢.n)= N
| C(P—)F (p—9)+C (p—¢)F (9—¢) ]|

(13-68b)

—jr/4
e J

D' (p.¢+¢.n)= N
-[C+(¢ +)E(p+9)+C (p+9)F (¢ +¢')]

(13-69a)
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D(p.¢.¢',n)=D'(p,p—¢'.n)
=D (p,¢+¢',n)

(13-70c¢)

D,(p,¢.¢'.n)=D'(p,¢—¢',n)

+D (p,p+¢',n)

(13-71d)
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—jr/4
e j

D (p,p,¢',n)=— ZMW
A[C @—¢VF (p—4)+C (p—¢)F (64" ]

(13-71a)
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—jr/4
e J

D 'n)=—
h(p>¢>¢> ) 2}7\/%
A[CT@=)F (4—-9)+C ($—9)F ($—4" ]

B[C PPV G +8)+C GV G +4)])
(13-71b)
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Uniform Theory Of Diffraction (UTD)

- e
D' =

+ cot

, e
D" =

) —jml4 {Cot ) T+ (¢ - ¢ ') )
2nm

T-($-9¢)

2n

+ cot

—— |FBrg (4-4)]

F [ﬁpg_@ —¢ )]} (13-68b)

. —jnl4 {Cot T+ (¢ + ¢ ). -
271\/%

T—(¢+¢")
2n

Copyright © 2011 by Constantine A. Balanis

All rights reserved

| FBrg"(9+4)]

F|Bpg ($+ ¢')}} (13-69b)

Chapter 13
Geometrical Theory of Diffraction



UTD Diftraction Coefticients
D'(p.¢—¢'.n)=D"(p,.& ,n)

—_]7'/4

= C(ENHFT C (E)H)F™
2n\/ﬁ{[ (EVF(E)+C(EF ()]
P, (13-68b)
C7 (&) =cot(ﬂ+§]; C (&) =cot(ﬂ_§]
(13-68c) ° ) (1';_68 A
Fr(&)=2j\Bpg"(¢) [ e
e (13-68¢)
F (&) =2j\fpg (£) j P (13-68)
VBrg (&)
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D' (p.¢+¢'.n)=D"(p.&".n)

—jr/4

e
=- CHENF () +C (EDNF (EN)]]
21273 {[
g d (13-69b)
C+(§+):cot(ﬂ+§ ]; C(§+)=cot(ﬂ_§j
n n
(13-69¢) (13-69d)
F (E=2jBg () [ e dr (1369
JBog™ (£ 7)
F(E)=2j\ppg (£ [ e dr (1369
Jpog (£ 7)
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Magnitude of F(X)

Magnitude and Phase of Transition Function F

1.0 50
0.8 — T~ - 40
Magnitude —
0.6 — — 30
N
04— \\ — 20
\Phase -
N
0.2 — S — 10
\\
~
0 Lol Ll BRI L Ly
0.001 0.01 0.1 1 10
Argument X
Fig. 13-23
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Transition Function F

F(x)=2jJxe™ j e dr

Vo
Fresnel Integral

x<03

J/

- 2 o
F(x)=|~mx—-2xe”™" - gxze SR/

x>55
i I 31
Fx)= 1—I_j2x_4x2_
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e—jﬂp

Ve =Fpp = D, =|(Df| D, || ==
i (D] D, I

D: (1) = Amplitude of Incident Field
@ D, ,= Diffraction Coefficient

1 . .
@r —== Amplitude Spreading Factor

7

(For Incident Plane Wave)

[ e—jﬁp]

(Also for Incident Cylindrical Wave)

@ e ’”? = Phase Factor
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3 Amplitude Spreading Factor

plane wave incidence

, p=ssin f,, cylindrical wave incidence

"
-

: spherical wave incidence

&

s' = distance (source to edge)

s = distance (edge to observation)
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What Happens Along
Shadow Boundaries

1. Case A: ¢'<(n—Dx

2.Case B: ¢'2(n—-1)x
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Case A:¢'<(n—-)r

L WA=2-n)rt

¢Q=nmw

Fig. 13-24(a)
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Case B:9p'>(n—-Dr

% "
\/ .
pe
¢=02n-r—¢ §="1.
\SB@:/
M ¢ - e

SO \\\\\\"’

WA=12-n)rn

Y,
~'f
£ |
N/
0l
v/
* /
X/
&S

2 Fig. 13-24(b)
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V' (p.&om)=1.,(p.&m)+1 (p.&,n)

—jm/4
e J

Vi (pdm) = T [ ©F©]

—Jjpp

H[C@F (&)} i
For V)= &= & — -4
For V) =>&E=E" =g+ ¢’
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e Tt oIk

V" (psgm)=—— N
(e e)]+[ceHr e
H{{c @ En]+[c@EnHr el
E=g-¢
E=grg
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Summary SDP, +SDP__: UTD
e —jm/4 e - Jbp

V] (pgn)__znm \/*
e

+| cot(ZED) F(g-¢)

J
{[cot L (¢+¢')J>
J

[cot ”(¢+¢) F (f+¢")

Copyn'ch 11 by Constantine A. Balanis
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Case A:¢p'>2(n-Dr

—jm/4 —j
e T e Jpp

2n\/27z,B \/p
[ (=62)r 697

Vlglrs(paéan) -

wCase A:ISB (9-9'=7)

+{[c0t( )F (¢+¢)]
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Case B:¢'>2(n—-1rx

—Jjr/4 —JpBp

Vh,s — _ € €
B (,0,5,7’1) 27’1\/% \/;

Case B: ISB (¢-¢'=-7)
o0 0

- [cot ( ”_(f,;"") ) F~(¢- ¢')]}

Case B:RSB [¢+¢'=(2n-1)x]
o0

+[:cot(%)F‘(¢+¢')J}s
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What Happens Along
ISB and RSB
Shadow Boundaries When:

1. Case A:9'<(n—Drx

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



Case A:¢'<(n—)rx

L WA=2-n)rt

¢Q=nmw

Fig. 13-24(a)
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b'<(n-r

ISB(S" =¢-9'=7)

Incident Diffracted Field

r

€

—jm/4 )

_2n

{ |:C0t ( ;r+(2¢;—¢') ) F_(¢ . ¢ v):|
| \N27p

_ e /PP

I -

VB (IO> 5 n) — \ i
7

e
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p'<(n—-Dr

RSB (£ =g+¢'=7)

Reflected D1

&

racted Field

(

€

—jm/4

_2n

| [l e

\
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p'<(n—-rx

ISB(c" =¢-9"=7)

Incident Dif

racted Field

r

€

—jm/4

_2n

W{ |:Cot(ﬂ'+(2¢;—¢'))F—(¢ _¢.)]

\
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Along ISB (¢=7+¢ or d—¢ =r)

Let: o9—9¢'=m—¢

T—(p—¢) T—(r—¢
cot (2¢ /) = cot[ (2 )}
— n dp—@'=rwr—¢ L
P c—0 21’1
=Cotl|] — |[= = —
2n g
T—(6—0) ] 20 2n 2n
ot TG =9) 220 _
i 2n Jogre g ‘g|sgn(5)
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AlongISB (¢ =7+¢' or p—¢'= 1)

g_(¢—¢')=1+cos[(¢—¢')—27mN_]
g (-9 =1+cos(g—4¢')

¢-¢'=(7~2) sgr(s)

N =0

g (p—9¢ ')|¢_¢.:(,,_g) =1+cos(7—&)=1-cos(¢)

=]—|l-—+.|=+—
p—@'=(r—¢) 2 2

g (p—9)
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Along ISB (¢p=7+¢' or ¢p—¢@'=1)

. . , | Bpe?
F - ppg -¢)], .. ., =F { 5 }

2 i z+x
F(X) ot |:\/g _2xej/7/4 _%xze—j;z/4:|ej(4 J)

x—0 j(/z+xj jZ
F(x) = ~Jmxe =7Txe *

/3/)82): \/ﬂpﬂszem

F- [ﬂpg’(¢—¢')] b)) F (

2 2
. _ fp i~
F[ —¢)] = o] [P
prg @), .. . =lely
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AlongISB (p=7+¢' or p—¢' =)

cot[ﬂ _(j_¢ )}F_ Bog (p—4")|
n ¢—¢'=(71—¢)
2n ‘g| 77,3,0 oI
‘5‘ sgn(¢)
cot{ﬂ —(0-¢ )}F_  Bpg (4-9" ]
2n ¢-¢'<(7-¢)

= nm sgn(e)e’™"
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Incident D1

.

racted Fields

Along ISB (g =7r+¢' or ¢ —¢'=1)

. . ~ 0 R
e TH(¢=9) Y
~jfp 277\/% {[COt( M ¢ )}
Vy(p.g—g'm)| =S

- e

Vi (pp=gm)| = To | 2ndanp IR seE)e
D™ j

Vic(p.g—¢'n)|  =-05¢77sgn(e)

it(p.g-g'm| =05

Copyright © 2011 by Constantine A. Balanis
All rights reserved

Chapter 13
Geometrical Theory of Diffraction

O—@'=m—¢



What Happens Along
Shadow Boundaries

2. Case B: ¢'>2(n—1)x
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Case B:9'>2(n-Drx

% "
\/ .
pe
¢=02n-r—¢ §="1.
\SB@:/
M ¢ - e

SO \\\\\\"’

Y,
~'f
£ |
N/
0l
v/
* /
X/
&S

2 Fig. 13-24(b)
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Summary SDP, +SDP__: UTD
e —jm/4 e - Jbp

V] (pgn)__znm \/*
e

+| cot(ZED) F(g-¢)

J
{[cot L (¢+¢')J>
J

[cot ”(¢+¢) F (f+¢")

Copyn'ch 11 by Constantine A. Balanis
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Casc A:¢9'>2(n—1)r

—jr/4

e e—Jﬁp

2n\/27z,B \/ P,
[ (=62)r 697

wCase A:ISB (9-9'=7)

Vlglrs(paéan) -

(¢~ ¢))F—

2n

+§[co

i{[cot( . )F (¢+¢)]

Case A: RSB (¢g+9¢'= 7z)
o0
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Case B:¢'>2(n—-1Dr

—jr/4 —JBp

Vh,s — _ € €
B (,0,4:,7’1) 2}’1\/% \//—)

Case B: ISB (¢-¢'=-7)
o0 0
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Case A:
1. ISB=N =0

C_(ﬂ_) :COt_ﬂ-—(¢—¢')—

2n
2. RSB=N =0

C_(ﬁ+) :COt_ﬂ-—(¢+¢')—
2n
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Case B:
1. ISB=>N =0

C+(,3_)=cot—ﬂ+(2¢_¢')_

2. RSB=N" =1

cia_ | Tt (P+e)
C"(f")=cot -
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Table 13-1: Cotangent Function Behavior for N *

Cotangent Function Value of N =
Becomes Singular Along the SB
When
T—(p-9) p=r+¢ Ot §-¢'=7 N =0
cot 17 ISB of Case A
T (+¢") | p=m—¢' or p+¢'=1x N =0
cot 2, RSB of Case A
[ n | ' ' +_
|7t @-9)] |e=prrop-g=z| N'=
i 2n | ISB of Case B
72'+(¢+¢') d=2n-H)mr—¢' N+=1
cot org+¢'=2n-D)x
2n RSB of Case B
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Example 13-3
GO and Diffracted Fields
From a PEC Half Plane
(Knife Edge)
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Example 13-3:

A plane wave of unity amplitude 1s incident upon a half-plane

(n=2) at an incident angle of ¢'=30°, as shown in Figure 13-20.
At a distance of 4 (p=A) from the edge of the wedge, compute
and plot the amplitude and phase of the following:

1. The total (incident plus reflected) GO field.

2. The incident diffracted field.

3. The reflected diffracted field.

4. The total field (GO + diffracted).

Solution:

It follows.
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Plane Wave Incident Upon Half Plane

30°

Fig. 13-20
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Field Distribution of a Plane Wave Upon a Half Plane

2D
Total
20 1 W m—————— Geometrical optics (GO)
: ——-——Incident diffracted (ID)
L e Reflected diffracted (RD)
I
g 1.5 : Half-plane (n= 2)
fg : Observation distance (p) = A
é" | Incidence angle (¢") = 30°
1.0 e
0.5
0' ...... = Eost | i
0 50 100 150 200 250 300 350
Observation angle ¢ (degrees)
(a) Soft polarization ~ F1g. 13-25
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Field Distribution of a Plane Wave Upon a Half Plane

z257

Total
------- Geometrical optics (GO)
— -—— |ncident diffracted (ID)
---------- Reflected diffracted (RD)

2.0

S = Half-plane (n = 2)

Observation distance (p) = A
Incidence angle (¢") = 30°

Magnitude

1.0
I
|
I

05

0 50 100 150 200 250 300 350
Observation angle ¢ (degrees)

(b) Hard polarization Fig. 13-25
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Summary

e—jﬂp _
Vl;(p>¢_¢’>n): \/; Dl(p>¢_¢'>n)

e—Jﬁp

Vs (p.p+¢.n)= N (p.0+¢')

N

' r e_jﬂp ' ' ‘ '
Vi =Vi=Vy = S A D (p.g=§m) =D (p.d+ 1)

\ P —~—
. D (p.¢.¢".n)

s

/
\

] . P I ’ r ’
Vy =Vy+Vy === D'(p,¢=¢.n)+ D’ (p,¢+4.n)

VP o
g D"(p.¢.¢".n)

Chapter 13
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J
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Computer Program (WDC)

Wedge Diffraction
Coefficients

Input Parameters: R, PHID, PHIDP, BT D, FN
Output Parameters: CDCS, CDCH
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Wedge Diffraction Coefficient WDC Subroutine
WDC(CDCS, CDCH, R, PHID, PHIDP, BTD, FN)
CDCS = Complex Diffraction Coefficient

(Soft Polarization)
CDCH = Complex Diffraction Coefficient
(Hard Polarization)

R = Real=Distance parameter p (or p') (in wavelengths)

PHID = Observation angle ¢ or y (in degrees)

PHIDP = Incidence angle ¢' or w' (in degrees)
BTN = Oblique angle S (in degrees)
FN = Wedge factor n [WA=(2-n)r]

Copyright © 2008 by Constantine A. Balanis Chapter 13
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Example 13-4
Reflection From a Flat PEC Surface

Example 13-4 :

For the geometry of Figure 13-9 repeat the
formulations of Example 13-2 including the
fields diffracted from the edges of the strip.
Solution:

It follows.
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Line Source Above Strip
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Line Source: Coordinate System

yA P;

Line source

. w
9 S -

Fig. 13-9(a)
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Geometrical Optics Fields

a. Incident/Direct
b. Reflected
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Reflection from a Flat Surface

Source 2 P

L == D §
/ s -, —_—
7’

" E =E'(Q,)-R-ASF-e¢/”

Imag‘e (Virtual, Caustic)
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I11
Regions  Range (¢)

| a<P<r—«
11 T—al¢pinr+a,2n-al9pL2r, 0{¢p<a
11 T+a<¢<2r—-«a
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Diffracted Fields
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Region Separation for GO & Diffraction

X

Region IV » Region ||

(4
(44

Region |11

Fig. 13-26(a)
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Geometry for Diffraction by Wedge

® Source

Observation

H, O
\WA:(2—n)7r
Q

R\

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



Diffraction by Edges 1 and 2

2

o ) .m. o

<
#1 X
e
2 2

Fig. 13-26(b)
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Diffracted Field from Wedge #1

y 4

Source
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Diffraction by Edge #1 in Region 0° < ¢ <180°

Source

- X
#1
Vv, =«
=T —
l’f 07 < ¢ <180°
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Diffraction by Edge #1 in Region 180° < ¢ <3607

C ¢
3
vizaf 25

X
»L & #1
W '
kB >| P\

Vi =a

vi+9=31=y, =379
&=y -y, =319~y
SEVHV ST Rig 13226(0)

V,

7 S

w| =

L1807 < ¢ <360°
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Diffraction by Edge #2 in Regi

on 07 < ¢ < 360°

v, =a

& =y -y =7-y,

Y

‘ Source

h

L0° < <360°

E =yt =4y,
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Geometrical Optics (GO) Field

o S I
IB 0 H( )(,B,O,)— IB 0
dwe 4

i , I
ELe (o) =4 B
dowe 4

Hy” (Pp,)

E;(Isz) -

El(fp,)=+ HP (Bp,)

n=,|=
E

For large arguments

, pp—o g
HO(Bp) = |2
mPp

e—jﬁp
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—jr/4
e/

Dh= 3.5 (& mF | pdg )]
H{C & nF [ pdg (6)])

\.f_ :V/l -

—jr/4
e’

Di =3 Tog (e & mF [ Bdg &)
+C (& mF [ pdg (ED]})

. . r
DSI_DSI Dsl
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E =y —y, =1 —9—y,

+ | Loe <p<180°
51 =Y, Ty, :77_¢+W1)

- :WI_WI' :377_¢_W1'

+ 1180° < ¢ <360°
51 =Y, Ty, :377_¢+W1)
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E,=E(p,=d,o)D,(d,y;,y,,n=2)
: 141(d> pl)e—jﬁpl

—jpd

,- e
E(p=d,0o)=E, \/5

D, (d.y,y,n=2) =Dy (d,y; —y4,n=2)
_Dél(da% +U7U1',n :2)

1

Al(dapl)_ \/,67
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C (& .n) =cot| TH4r:
2n

— —51—:‘//1_9//{
. T—&
C (& .n) = cot| Z=12
2n | .
— —c1 =¥ —¥

_ﬂ. + §1+>
2n

— —S1 =Y T,

C* (&5, n) = cot

C (& n) = cot| Z=21
2n

— =1 =Ty
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) i ok i o PP
Ezl — Eo Dsl
T

= E,[Vi(d,& n=2)~V;(d,& n=2]" -

| V T
E=y-y =n—¢-y,
E =y +y, =n—p+y,
E =y -y, =3nr—¢-y,
E =y, =3+,

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction

L0° < ¢ <180°

L180° < ¢ <360°




Diffractions (Wedge #2)
In a similar manner

rdo_ i e—jﬁdD | g 7PP
z2 0 \/3 52_ \/E

T~

r N~ Jbp;

| l - r - €
= E,[Vi(d,& ,n=2)-V;(d,& ,n=2)]

N

E =y, —w,=¢-y,

} | L0° < ¢ <360
S =y, ty, =0+,
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Reflection Geometry
2 /

P
/
%

y y
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For Far-Field Observations

0, :p—hcos(%—gé):p—hsingé

\

o :p+hcos(£—¢j:p+hsin¢

2 » For phase terms

w

p = p——cosf
2
w

p, = p+—-C0sP
2 )

p,=p, =p, =p,=p}For amplitude terms
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Thus 1n Far-Field (Summary) 0" <@g <360°

-Jjbp

E;=Eoe+fﬁhsin¢(eﬁ] f O<¢<7Z'—|—WO D

E’ = —Eoejﬂhsm('b[%j \272. _ WO S ¢ S 272.)
D

7l _ +j@cos¢ o PP {WO < ¢ SE_WQ}
e ( ] (0<gp<2r}

0" B1 W
—‘ﬁcos —J
EjzonVégzejz ¢(€\/§O] {O<¢<27Z'}

Note: The E,e’™”/ \/; factor can be suppressed.
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Normalized Pattern of Line Source Above Strip
GTD (w=2A4, h=052)

90°
2y S e GO (w=2A, h=052)
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Scattering
From
Strip
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Finite Width Strip

Fig. 11-4 (a)
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TM? Polarization

Fig. 11-4 (b)
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TE? Polarization

>|

Fig. 11-4 (¢)
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Scattering by a Strip
Using
Diffractions
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Example 13-5
Scattering From a PEC Strip
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Example 13-35:

A soft polarized uniform plane wave, whose electric

field amplitude 1s £ , 1s incident upon a two-dimensional

PEC strip of width w, as shown 1n Figure 12-13a and

Figure 13-28.

1. Determine the backscattered (¢ = ¢') electric field and
1ts backscattered scattering width (SW).

2. Compute and plot the normalized SW (o, ) in dB/m
(dBm) when w=2A4 and f =10 GHz.

Solution:

[t follows.
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Plane Wave Incidence
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X
Fig. 13-28(a)
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Plane Wave Diffraction

YA Pi
P
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” l \
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Fig. 13-28(b)
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Geometry and Field Expressions

. A . ) B = Axﬁcos( - ¢')
E =a.Ee’*", ‘B‘ =p .

Ez’ — aZEOe+j,6’(xcos¢'+ysin¢')

+ayBsin(z - ¢

B = axBcos¢'— a,Bsing’

A -ﬂ“‘ ] A A N
i +j=5-c0s¢ I = axX +a,yv +da:z
E(Q) =a:EF e - Ay as
’ ngq 1'30 N ;
- B -r=p(xcosg'+ ysing
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For Backscattering

= El(Ql) ' DiAl (pl)e—jﬁm
| | ‘BM
EQ)=E | =akEe"

W
X=

2
y=0
p=¢

~—CO0S ¢

<

A (p,) = \/1;
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/A
_]I . T
e “sm| — i
— AN n
Di=a.a. 4
NAJ27T T —
P cos| — |—cos Vi~V
17 17
1 |
T + .
cos| — |—cos V1T Y
I{! I{! ) n=2 |
Y=y =m—9¢
—jzl4 [ N
~s NI 1
D1 =-a.a. 1+
227 cos¢g_
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Geometry For Backscattering

\ 7\

‘//1:‘;//1':77_9’5':77_?&
/02 v, =y, =¢'=¢ 101

W, =¥, ! ¢

N N
Q, [ " w 0,
»
| 2 2 |
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Lw

—jr /4 T o089 ~ Py
d . e e 1 e
E =-aFE, {1+ }

2273 cos@ | /p,
Similarly, it can be shown that:
Pw
_,, —Jj—cos@ .
) e "o T2 1 e—Jb’p:
E, =-aF, 1-

22np coS @ \/p_

For far-field observations:

w w
o, = p +—cos(77 —¢) =p——COS¢Q
2 2
> For phase terms
0, =p _ Y cos £—¢ = p +Kcos¢
: 2 2 2 )
p,=p,=p For amplitude terms
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Geometry For Backscattering

W W
\ Ecos(ﬁ—gﬁ)——zcos;é
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4
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-jzl4 ) ~jbp
d . e 1 weoss €
E{ =-aE, Sl —— e
227 | cos Jp
—jzl4 1) ~Jpp
Ele_gp & Jy_ L | imems @
2

®|

- 227 | cosg)
E; = E/+E;

—jr/4
e J

t k. W [cos(,chos )

, sin( fwcos @) | e
+ j(pw) Bwcoss | Jp
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Since there are no GO fields 1n the baskcattered
direction (Snell's Law 1s not satisfied) when

¢ =¢ # /2, the total diffracted field also
represents the total field. In the limit as

¢ = ¢'= r/2, each diffracted field exhibits a
singularity; however, the total diffracted field

1s finite because the singularity of one diffracted

ficld compensates for the singularity of the other.
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This 1s also evident at normal incidence as
long as the edges of the two diffracted
wedges are parallel to each other, even
though the included angles of the two
wedges are not necessarily the same [39].
In addition, the limiting value of the
diffracted field at normal incidence reduces

and represents also the GO scattered field.
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2 - 12
2 E ' |
‘Ef = £, <cos’(fweos @) +(fw)’ sm(pweos g)
27f3p . pwcosg
4 ‘Ed 2 N
o, ;= })i21< 27p ‘Etl — ¢
4 _ _2\
P .
o, , =—1c0s’ (Bwcosd)+(Sw)’ sin(fweos ¢) >
2  pwcosg
ﬂ’ | Pw==>1
O, p ‘ = _{1 T (:Bw)z} = :B(W)z
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SW (dB or dBm)

Monostatic: Soft (TM?) (w =2A,f= 10 GHz)
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Problem 13.36 (end of chapter problem):

A hard polarized uniform plane wave, whose magnetic

field amplitude 1s /7, 1s incident upon a two-dimensional

PEC strip of width w, as shown 1n Figure 12-13b.

1. Determine the backscattered (¢ = ¢") electric field and
its bascattered scattering width (SW).

2. Compute the plot the normalized SW (o, ) in dB/m
(dBm) when w=2/4 and /=10 GHz.
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Distance Parameter L

When both the source and
observation are at a finite distance.
Near-field observations.
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Distance Parameter L

P: Observation p +(p') —2pp'cos(¢—- 9"

K /%: Source
/

P y 0

WA=Q2-n)x
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Vi(Lop—¢'m)=Vi(L.E )
~jpp (13-84a)

= DI(L.& n)

7

Vs(L,p+¢',n)=Vs(L,&E ,n)
—jpp (13-84b)
D"(L,&",n)

I

L= PP = ~ P (13-84)

Cptp' |
L~ p
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Distance Parameter L

When both the source and
observation are at a infinite distance,
like n plane wave scattering;
1.e., both source and observations
are at far-field.
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Distance Parameter L

P: Observation p +(p') —2pp'cos(¢—- 9"

K /): Source
/

P y 0

E, U, O

\WA =—2-n)x

'
~ P
L=-FP - = <
+ P
PTP - (
(| ¥ P
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Ve(L.g—¢'.n)=Vy(L, &, n)
_jpp (13-84a)

= D\(L.&.n)

N

Ve (L,p+¢',n)=Vy(L,5 ,n)
~Jpp (13-84b)
D;. (L, é:_ , n)

Jp
P>

L=+ - « (13-84)
p+p

In that case, UTD reduces to GTD and

you have to use GTD because the

e
p'—=x

UTD algorithm requires finite distances ().
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In order for the Keller diffraction functions and

coefficients to be valid Spg™ >> 1. This can be
achieved by one of the following conditions:

1. Bp and g~ are large. These are
satisfied 1f the distance p to the observation
point 1s large and the observation angle ¢ 1s far

away from either of the two shadow

boundaries.
g (gﬂ) - 1+cos[(¢ F¢') —27mN:}
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2. Bp large and g~ small. This is satisfied
if the distance p to the observation point 1s
large and observation angle ¢ 1s near either

one or both of the shadow boundaries.

3. Bp small and g~ large. This is satisfied
if the distance p to the observation point is
small and observation angle ¢ 1s far away

from either of the two shadow boundaries.
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GTD Can/Should Be Used When:
1. Observations are NOT AT or NEAR
the ISB or RSB, no matter what the

distances of the source or observation are.

2. The incident wave 1s uniform plane wave
and the observations are made at distances
far away from the edge of the wedge; many
wavelengths (1deally at infinity) because the
Transition Region along both the ISB and
RSB shrink.
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UTD Should/Can Be Used When:
l. Observations are made AT or NEAR
the ISB or RSB, especially when the distances

of the source and observation are small.

2. The incident wave 1s uniform plane wave
and the observations are made at short distance.
3. The source 1s located at short distances but the
observations are made at far distances
(1deally at infinity).
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Oblique Incidence
Diffraction
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™,

E- and H-plane Diffraction by Rectangular
Waveguide and Pyramidal Horn

; \
S A \
\

. \\\ N\ I \‘\ \ N
Waveguide \ L2 > \

Horn

Fig. 13-30 .,
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For oblique incidence diffraction,

we adopt ray-fixed coordinate systems
(s', B.,¢") for the source and (s, 3., #)

for the observation point, in contrast to

the edge-fixed cordinate system
(0,92 p,9,2).
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The diffraction coefficient for ray-fixed
coordinate system can be expressed as a
dyad (or 2 x 2 matrix, with 2 nonvanishing
clements), whereby for an edge-fixed
coordinate system it 1s expressed as a

dyad ( or 3 x 3 matrix, with 7 nonvanishing

clements).
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Oblique Incidence Wedge Difiraction

¢
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e
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(a) Oblique Incidence
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Oblique Incidence Wedge Difiraction
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Oblique Incidence Wedge Difiraction

Observation

Source

.
X
2 —n)n
p'=s"sin B,
p=ssin B,
(b) Top View Fig. 13-31
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General Form of Diffracted Field
E°(s)=E"(Qp) D(L:$.4"m; ) A(s,sNe ™
A(s,s") :\/ S (13-85)

s(s'+5)

Edge-fixed plane of incidence with the unit vectors

$'=¢'x f3, (13-86a)
where ,éo i1s || to plane of incidence

g/z' is L to plane of incidence

Edge-fixed plane of diffraction with the unit vectors

S=¢xf, (13-86b)

where BO 1s || to plane of diffraction

~

¢ is L to plane of diffraction
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E‘(s)=E(Qp)-D(L:g.4":n: B) A(s,s)e
1o (13-85)
S'=¢ xSy (13-86a)

where ,30 1s || to plane of incidence

é 1is L to plane of incidence
S =¢xf (13-86b)
where ,éo 1s || to plane of diffraction

413 1s | to plane of diffraction
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Incident Field At Diffraction Point
Ei(QD) — ﬂ(')E;'O(QD) T ¢E; (Op)
E' (0y)=f,-E(Q,)
Ey(0))=¢ E(Q,) s

Copyright © 2011 by Constantine A. Balanis Chapter 13



D(L;$,¢";n; B,) = Dyadic Diffraction Coefficient
D(Lig.¢5m ) ==BBD(Lid g5 mB)
~¢¢D,(L;¢,¢ ;0 f3,)
D (L;p,4 :m;8))=D'(L,¢—¢",n,f,)
-D'(L,¢+¢',n,f,)
D,(L;¢,¢"m;8,)=D"(L,p—¢",n,f3,)
+ D" (L, ¢+¢',n,f,)

(13-89a)

(13-89b)
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E ()

E5()

_DS 0

0 D,

EL(Op)

Q)

E(Op) =By E(Op)
E\(Qp) =6 -E(Op)
Ej (5)=-D,E (Qp)A(s',s)e "
Ej(s)=-D,EL(Op)A(s', s)e "
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Di(L9¢_¢'anaﬁ(')) —

x%rcot_ﬂ+(¢_¢')—

L 2n )

+Cot_ﬂ_<¢_¢')—
i 2n
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2ny/2 73 sin f3, "
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F~| BLg ($— ")
(13-90a)
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D' (L,¢+¢'.n,f3)=

-

X< COt

.

+ CcOot
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T+ (p+9)

2n

2n

eserved

T-(p+4")

—jr/4
e J

2ny/273 sin f3, "
F*| BLg (¢+4")

F~| BLg ($+4")

(13-90b)
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For Straight-Edge, Oblique Incidence

7 - iS(,L:e+S),01i,03 sin® f3, (13-91)
pP.(p, +5)p,+5)

p. =incident wave radius of curvature
p., P, = principal radii of curvature of incident wave

. Joo for plane and cylindrical waves

P. = . : .
’ IS' for spherical and conical waves

( . .
o for plane wave incidence

P1» Py =0, OT p, =0, p; = p' or vice-versa

1 1 )
P1-P; =A . . .
for cylindrical wave incidence
|s' for spherical and conical wave incidence
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Then L reduces to

~

s sin’ 3, for plane wave incidence
(p.=p| =p,=>)
L' for cylindrical wave incidence
pPTp
7 (p.=w,5=p, 3, =90") (13-92)
= <
(py=ppy=00rp =0,p,=p")
(Also p=s sinf3,, p'=s'sin 3))
> sin® [, for spherical and conical wave incidence
S+
k (p,=pi=p,=5")
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The spatial attenuation (amplitude spreading) factor 1s:

| . .

— Plane & conical wave inc.

Js

, 1 . L .
A(s',s) =9 ——,p=s sin f, Cylindrical wave inc.
J P
(13-93)

/S '

— Spherical wave 1nc.

LS
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It s>>s5'" p>>p'

s sin’3, Plane wave incidence

) Cylindrical wave incidence
L= (p'=s"smp) (13-94)
s' sin°f3, Conical & spherical

wave 1mncidence
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Example 13-6
A4 Monopole
Above Square Ground Plane
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Example 13-6:

To determined the far-zone elevation plane
pattern, 1n the principal planes, of a

A/4 monopole mounted on a finite size square
ground plane of width w on each of its sides,
refer to Figure 13-32a. Examine
contributions from all four edges.

Solution:

It follows.
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Vertical Monopole on a Square Ground-Plane,
and Reflection and Diffraction Mechanisms

w | N
\\ Bo l y

~ |

¢ = :

.

. N\ X
Ay — )

(a) Monopole on ground plane Fig. 13-32
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Normal Incidence Diffraction of Vertical
Monopole on a Square Ground-Plane

Principal Plane T

Diffraction :
I
I

2

ul.‘:

)=

Fig. 13-32
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Normal Incidence Diffraction of
Vertical Monopole on a Square Ground-Plane

ol

' . o N\ frdee” ) .
B, = 90\ Diffraction

Point #1

X
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Normal and Oblique Incidence Diffraction of
Vertical Monopole on a Square Ground-Plane

AR Keller Cone , 274 ~«

Diffraction

T

A4 Point #2
1 - Y
Diffraction
Point #1

</
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Wedge Diffraction: Normal Incidence
Wedge

Edge

Plane of
diffracted

rays \

Incident

ray s

Fig. 13-14
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racted Fields

Polarization of Incident and D1

P(p, ¢) . O, ¢ P(p, §) O, ¢)
Hd H
y T
Q) ~ 4
d 7,
E -
E(I
A & '
joad - - -
WA=(2_”)1t WA=(2—”_)T[
(a) Soft Polarization (b) Hard Polarization
Fig. 13-22
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Vertical Monopole on a Square Ground-Plane,
and Reflection and Diffraction Mechanisms

#2 NN

WS

- 1 1 Fig 13-32

(b) Reflection and diffraction mechanisms
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GO Electric Field of a Monopole

T
cos| —cosé o
_ 2 e JBi
I r
EQG_EQG+EQG_EQG_EO .
sin @ r
| oI
I ]
E(?G o E@G ‘ + EQG ‘ - eG | o EO 7
=" 7 o=" ="
2 2 2 2
I 7
E@G ‘ _2E¢9G ‘ _ZEBG ‘
=" O=m/2 O=m/2
2
1 1 e”
I
EeG ‘ - EE(?G ‘ - EEO By
=" ="
2 2
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T

El(n,0)=E(Q)D"(L,& n=2,8=>)

2
- A (w,1)e I
; 1 T W
E(Q)= EEQG (‘9 — 5»7” — EJ
T
Ei(Q)_lE COS 5005«9 i E, TP
o2 sin & r o=z 2 w/2
| E e—j,Bw/fZ
E(Q,) ==
(©)) > wid
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Diffracted Electric Field of a Monopole From Edge #1

Egl = Ei(Ql)D11r’41€—w}i

1 | .
=EE;G | 2D'(L.4.n)Ae ™"

w
_]’B_
1 e

2 W

2

oW
‘],55

2D'(L,¢,n)Ae """

€

El =E, D'(L,¢,n)Ae """

d
2
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. T
D, | L& ,n=2,0, :5

=D'| L& ,n=2,8,==

+D"| L, &, n=2,8,==

. D '
L =s'"sin” B, | =s'=w/2
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Amplitude Spreading Factor

plane wave incidence

, p=ssin f,, cylindrical wave incidence

"
ERCEES

spherical wave incidence

2

'= distance (source to edge)

vy =

s = distance (edge to observation)
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N : JC
é:l :Wl_';”1_2
JC

§1+:W1+W1'_ 5

v

)

Vs'

AI(W )~_‘5
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: \/W /2 e—jﬂ"i

h
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Egl(rl: 0) = Eo

Egz(rz ,0) = _Eo

e T

I i.r w ' 72.- )

2

-
7T 7T
o . 0<O<=
7T
G =—+0, Sy =9
2 S T
=9 Z<6<n
L 2 2
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For far-field observations

/= F——cos| =~ |=r——sin
2 2 2
| - for ¢ terms

W T W
I,=r——Ccos| —— 0 |=r+—sind
2 2 2 )
=1, =7 for amplitude terms
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i,r w '
Egl(rae)zEO VB, 59519}7:29/80:_

],B—sm@ e_J’BI

+ €
V

I, w '
Eg?_(rag) — _EO VB’ 5752’” — 2>ﬂ0 - A

—j,BEsinH e—j,Br
. e 2

V
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Amplitude Pattern: Square Ground Plane

-
‘
~
=

o

30‘

w=41{t

“« ‘v 1 = llC?IiIz

w=4feet=122m
) 180
f=10GHz

Relative power
(dB ldown)

’
Experiment ”4-{L/ /
——— Theory (GOand GTD) = @SS==EF====F w

....... Theory (GO) 4 _L/ Flg 13-33

f——>/
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Curved-Edge
Diffraction
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Diffraction by Curved-Edge Structures

(a) Circular grouﬁd plane Fig. 13-34
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Diffraction by Curved-Edge Structures

Fig. 13-34

(b) Paraboloidal Reflector
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Diffraction by Curved-Edge Structures

(¢) Conical Horn Fig. 13-34
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Oblique Incidence Di

raction by a Curved Edge

b=

Q)

Source

(a) Oblique Incidence

Copyright © 2011 by Constantine A. Balanis
All rights reserved

:

B, Y

Diffraction
plane

(S X @)

s=¢xB,

Op

gl - ¢I X BI”

Edge-fixed
Incidence
plane

(§' x &)

Fig. 13-35
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Oblique Incidence Diff;

raction by a Curved Edge

Observation

>

S

A

n, .
; ‘ p=ssinf
) .
' . p'=s"sin 'B'()
4 N
\
\
A Ve
¢ \
\
Source . .
(b) Top View Fig. 13-35
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Curved Edge (Screen)
E‘(s)=ENQ,)- DL, L';¢,4"m B,) A(s, p)e P

' s>>p,
A(S,pc):\/ > :\/ Pe__ " NFe (13-100)

s(s'+5) s(p, +5) s
3350 /S'=pc
1 I n-(s=s) 1 n-s—-n,:s

— = —— - — — (13-100a)
p. P, PSIV [ p, p s [
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distance between caustic at edge and

S
I

second caustic of diffracted ray
p., = radius of curvature of incidence
wavetront 1n edge-fixed plane
of incidence
p. = for plane, cylindrical and
conical waves

l '

p,=s' for spherical waves
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p. = radius of curvature of edge at diffraction point

o
S

el

n, = unit vector normal to edge at (), and directed

away from the center of curvature
s'= unit vector in direction of incidence
s = unit vector in direction of diffraction
[, = angle between s' and tangent to the edge at

point of diffraction

e =unit vector tangent to the edge at the
point of diffraction
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—ir/4
e.]

D'(L,s ,n,fB)=— anSinﬂo
{CEF[BEEED] 3o
+C (E)F :,BLig(§):}

—jr/4

€

D' (L& ’”’ﬂ‘)):_zn\/ﬁsmﬂo
-{Cﬁh(é‘jh)F+ [,BL”78+(§+): (13-96b)
+C(ENF[BLog (69)]
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D(L,L,E ., n,B)
=D'(L,& ,n,B,) = D"(L™",& ,n, By)

Dh(LiaLraés—aé:+>n> /BO)
=D'(L,&",n, B)+D"(L™",&,n, )
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For Curved-Edge Diffraction

ri_ S AP o Vi
pe(pe+S)(p2+S)

(13-97a)

) L
Lro,rn _ IS(IOIe +S)pl,~102 Siﬂz /B(') (13-97b)
P, (P, +5)(p, +5)

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



For Curved-Edge Diffraction

p. = radius of curvature of incident wavetront in the

edge-fixed plane of incidence

(

_ for plane and cylindrical waves
Pe = - - -
"~ |s' for spherical and conical waves

p. = radius of curvature of diffracted wavefront in the
edge-fixed plane of incidence
4 . .
|00 for plane and cylindrical waves
P, =9 . .
s' for spherical and conical waves
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Caustic Distance and Center of Curvature
for Curved-Edge Diffraction

Diffracted
rays

Curved

Incident
rays

Source (a) Caustic distance Fig. 13-36
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Caustic Distance and Center of Curvature
Curved-Edge Diffraction

5
Observation
point
____i’*’____ Center of
curvature
Diffracting
edge
Source S &
~

(b) Center of curvature Fig. 13-36
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Curved Edge (Screen)
E‘(s)=ENQ,)- DL, L';¢,4"m B,) A(s, p)e P

' s>>p,
A(S,pc):\/ > :\/ Pe__ " NFe (13-100)

s(s'+5) s(p, +5) s
3350 /S'=pc
1 I n-(s=s) 1 n-s—-n,:s

— = —— - — — (13-100a)
p. P, PSIV [ p, p s [
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distance between caustic at edge and

S
I

second caustic of diffracted ray
p., = radius of curvature of incidence
wavetront 1n edge-fixed plane
of incidence
p. = for plane, cylindrical and
conical waves

l '

p,=s' for spherical waves
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p. = radius of curvature of edge at diffraction point

o
S

el

n, = unit vector normal to edge at (), and directed

away from the center of curvature
s'= unit vector in direction of incidence
s = unit vector in direction of diffraction
[, = angle between s' and tangent to the edge at

point of diffraction

e =unit vector tangent to the edge at the
point of diffraction
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p,, p, = principal radii of curvature of the
incident wavefront
p. = radius of curvature of the reflected
wavelront in the plane containing
the diffracted ray and edge
The subscripts ro,rn 1n (13-96b) and (13-97b)
denote that the radii of curvature p,, p, and p’ must

be calculated for 7o at the reflection boundary 7 -¢'

of Figure 13-24a and for rn at the reflection boundary
2n-1)rm-¢"' of Figure 13-24b.
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For far-field observation where s >> p., p/, ps. b, 1, s,
(13-97a) and (13-97b) simplify to

=8 g (13-98a)
Pe

Lz‘o,i‘}‘z — 101 ,[:2 Siﬂz /BO (13-98b)
Pe

[f the intersecting curved surfaces forming the curved edge
in Figure 13-34 are plane surfaces that form an ordinary
wedge, then the distance parameters in (13-97a) and
(13-97b) or (13-98a) and (13-98b) are equal, that 1s,

e =" = [ (13-99)
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Curved Edge (Screen)
E‘(s)=ENQ,)- DL, L';¢,4"m B,) A(s, p)e P

' s>>p,
A(S,pc):\/ > :\/ Pe__ " NFe (13-100)

s(s'+5) s(p, +5) s
3350 /S'=pc
1 I n-(s=s) 1 n-s—-n,:s

— = —— - — — (13-100a)
p. P, PSIV [ p, p s [
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Curved-Edge
Diffraction Example
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Example 13-7

M/4 Dipole Above
Circular Ground Plane Diftraction
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Example 13—-7:

Determined the far-zone elevation plane
pattern of a 4/4 monopole mounted on a
circular PEC ground plane of radius a,
as shown 1n Figure 13-37a.

Solution:

It follows.
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A/4 Monopole Above Circular Plate
Z A

A4
Y @
#2 = 2
¢/\\
N
Do
g €
i <4
N
\\
X
Fig. 13-37

(a) A/4 monopole
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Two-Point
Diftraction
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Circular Ground Plane

Z_0 0<0<90° T
_J)2 l//1=5+9
_ ]2
T _ 6 90" <6 <180 O O
[ 2 0" <6180

Fig. 13-37

(b) Diffraction mechanism
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Diffracted Fields from Diffraction Points #1 and #2
Circular Ground Plane

Diffraction Point #1:
E! (1) = Ego(Q)D] (L, L) A(r,p,)e """

Diffraction Point #2:
Ezd(rz) — Eé?O(Qz)D;(L;,L;)Az (rzapcz)e—jﬂf’z
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Diftraction Point #1
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Geometrical Optics
Field of /4 Monopole
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Geometrical Optics Field

Quarter-Wavelength Monopole
(same as that of A4/2 dipole)

E, (r.0)=E. +E. =E,

COS ( COS 6’) i
E,.(r.0)=E, - (4-84)

sin & a
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Incident Geometrical Optics
Field Toward
Diffraction Point #1
(r=a, =90°)
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GO Field Toward Diffraction Point #1
Quarter-Wavelength Monopole

T
cos| —cost || _,
2 e’
sin & r
_ e IPT
— Z r — —
Eec; ‘ — Eec; ‘ T Eec; | — Eec; ‘ — Eo )
6=90° 6=90° 6=90° 6=90° /
_ AL _ r
EeG ‘ =2k 6G ‘ - 2E0G ‘
6=90° 6=90° 6=90°
- 1 | |
EéG ‘ :_EaG ‘ :_Eo ‘ :_Eo
. 2 .2 A .2 a
r=a,0=90" r=a,0=90 r=a.0=90"
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Amplitude
Spreading Factor

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



S’ p. 5122 Pei jo
1 o cl cl
4 (‘S lﬁp(;l) -

51(51+51)‘ s\ (p., +5)) S,
(13-35¢) S
11 (-5

S=)‘1

n, -5, =|n|s,[cos(0") =1
~ A A A ﬂ \
n .S, =|nlls, —9):sm9
2
1 1 1-smné 1 l+siné 31n0 a
_——— - pcl = —
p., a a a a sin &
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Diftraction Coefficient
Edge #1
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Circular Ground Plane

Z_0 0<0<90° T
_J)2 l//1=5+9
_ ]2
T _ 6 90" <6 <180 O O
[ 2 0" <6180

Fig. 13-37

(b) Diffraction mechanism
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Distance Parameters
I &
Ll Y Ll

Dlh(LilﬂLLW1DW1'>n) — D{(LIDWI _W1'>n — 2)
+ D[ (L, y, +y,,n =2)
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- ] + i 1 . |
Lzl — iS(l[?e S)plip.? Slﬂz 180 ‘
p.(p; +5)(p, +5) ,=90°
| +S)p oy,
I =— (pre Dby G2 g |
p.(p +5)(p, +5) 4,=90°
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Distance Parameter
I

1
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i _

ro__

i i i
S + S . |
— : (IL:e )plilo2 Sln2
PPy +5)(py+5) 5250
s(p, +5)piP; )
=, s f5
p.(pr +5)(p, +5) .
Chapter 13

Copyright © 2011 by Constantine A. Balanis

All rights reserved

Geometrical Theory of Diffraction



For Ground Plane Curved Edge

Since the wave from the A/4 monopole

is spherical, p; = p, = s'=a. Therefore ~

. z'+ I i . |
L = Z_S('[? )P ll_'o 2__gin’ 5,
P, (p, +S)(p,+5) 5 —o0°

A B I I "
pi=s'=a; p =p,=s'=a

o SEEEY L. g
1 S'(s'+5)(s'+5) ’

By =90°
P osees!
Ll- . SS§ oy
!
S+
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Distance Parameter
L

1
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For Ground Plane Curved Edge

r__ Sp.+5)pip
| r r
P.(py +5)(p, +5)
/0; :,01’ :IO; :S' =

2
Lr . S(S' S)(S ') Siﬂz ﬂ' ,, Ne
L a0 ' 0 /
s'(s'+85)(s'+5) v
" SS' 5 | §>>5" -
L, =——sin" j = §'=
S'+s 5 —o0
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D (L, Ly, w,.n) =D/ (L, y,—y, n=2)
+ Dy (L, y, +y,,n=2)

vo="w0, =0  0°<O<180

2
W, =W =¥, YTV =Y,
v v B 7
=Y Y=Yt = =Y _5+9
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Since

Wl_W1:W1+W1:W1:l//1:5+‘9

then
D(LDWI Wl:n 2) D’(LDWI-'_Wlan_z)
D (L1>W19n 2) D (L1>W1>n_2)
and
Dlh(l’ilal’lll:'#/bwwn) 2D (L19W1>n 2)
=2D/(L,y,,n=2)
LI'IZLZ:S':C’; WI:E-HQ’
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Summary for Diffractions from Edge #1
EY(n) = Ego(Q)D! (L, L) A (1, p.)e "
| 1 —Jjpa
Lo Q) =K,
2 a

DL, L) =2D/(L,w,,n=2)=2D/(L,y,,n="2)

1>°1

e

L=L=s"=a; w1:§+<9

\ e a
Al(l/i?pcl): 1 : pclz .
7 sin &
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Summary for Diffractions from Edge #1

E{ () = E5o(Q) D! (L. L) 4,1, p e

1 e /P o a e’
EY(r)=| —E 2D (L oy, n =2
L (1) (2 o 4 j[ W )] s 7
—jPa \[ i —Jpn
E{(r)=E,| = Df-"(a,1+9,n=zj L
Ja )| 2 simé 7,
V;’

—jpPn
Ef(n)=E, V;"‘(a,f+9,n=2j 1 e
2 sné r

. . 1
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Following a similar procedure, it can be shown that:
Diffraction Point #2:

ES(ry) = Ego(Q)D; (L. L) A (5, p, e 7™

Ed( ) E e_jﬂa |:Dz'r( 5 2)] JZ | e_jﬂrl
r)=— yola,g,,n= e’
L O\ Ja , siné 1,
, 1 e—jﬂ"z
Ef(r)=-E, |V, (a,&.,n=2 72
() 0[ (.¢: )] sind r,
Z_0, 9<0<=
&=1: ’
9, L<o<n-0
L 2 2
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JPe

g

Az(rszcz):
1 _’?’2'(:?\'2_*52)
p.,  p,sin” fi
l_ﬁ2-§'2—732-§2
a asin’(90%)

1
Peo
1
Pe2

n,-s, =|n,||s,|cos(0”) =1
A A A A 72. B
n,-S, =|n,||s,|cos| —+60 |=—sm b
2
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] 1 n,-5,—n,- S

p., a asin’(90°)
I 1 1—(-sin®)

2

Per d a
~1-1-smmf  sméb
N a . q
. . a
Per = sin &
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\/,0702 1 | a

7, _Z\ sin &

P jm/2 \/ p
7 Vsind

E (1) = Eyo(Q))D; (L, L))
- jpr

A (., p,,) =

a oin/2 €

\sin@ 7,
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For far-field observations

.
T .
r,=r—acos| ——0 |=r—asmnd
2
| -for ¢ terms
T .
Ih,=r—acos| ——0 |=r+asnd
2 ,
=1, =7 for amplitude terms
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Using the results from Example 13-6 we can write

T
cos(—cos 6’) Coa
2 e Jﬁ’

sin @ r

0<@<m/2

E, (r,0)=E,

_ » jPasm@ _—jpr
E4(r.0)=E, {V;" (a, 0+ % "= 2)} c_ ¢

Nsing  r

jpPasing _—jpr
W /2 € e
E&(r,0)= —EO[VB‘” (5@2, n= 2)} e’ ﬂ

o _ o
(7 r
Z-0, 9<0<=
. |2 2
g, =< 5
B T T
=9, “<O0<r-6
[ 2 2
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Amplitude Pattern: Circular Ground Plane
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It 1s noted that at &= 0° or 180° the
diffracted fields become singular because
along these directions there are an mfinite
number of rays that contribute caustics for
the diffracted fields. Along these
directions, these rays form *‘a ring source
radiator”.

The mfinite number of diffracted rays from
the rim are 1dentical in amplitude and
phase and lead to the caustics.
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Ring Radiator on a Circular Ground Plane
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Therefore the diffracted fields from the
aforementioned two points of the rim are
invalid within a cone of half included
angle of &, which 1s primarily a function
of the radius of curvature of the rim. For
most moderate size ground planes, 6, 1s
in the range of 10°< 6,< 30°.
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To make corrections for the diffracted field singularity
and 1naccuracy at and near the symmetry axis (€= 0°
or 180° due to axial caustics, the rim of the ground
plane must be modeled as a “ring radiator”. This 1s
accomplished by using the Method of Equivalent
Currents (MEC) concepts 1n diffraction which will be
discussed next. The ring radiator at and near the
symmetry axis (€= 0° or 180°) leads to higher field
intensity compared to the two-point diffraction. This
1s demonstrated in the next two graphs for circular and
square ground planes.

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



By modeling the ring radiator by “equivalent
currents’” for the field at and near the symmetry

ax1s (0= 0° or 180°), which will be in the form of an
integral, 1t can be shown that by applying the
Method of Steepest Descent (Saddle Point Method),
which was discussed previously, that for points not
close to the symmetry axis, the diffracted field can
be included by assuming that only two points on the
edge of the cone, which are contained 1n the plane of
diffraction and are diametrical to each other, are
sufficient to predict the overall radiation pattern very

accurately.
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Amplitude Pattern: Circular Ground Plane
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Method
of
Equivalent Currents

(MEC)
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Normal Incidence
Equivalent Currents

(EC)
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Wedge Diffraction at Normal Incidence and its Equivalent
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\
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Ideal Current Distribution on a Dipole Antenna [38]

(

[, sin ﬂ(ﬁ—z’j 0<z'<+0/2
e AN
]z (Z)_<
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Electric Field Radiated by a Dipole of Length 7 [38]

—Jjpr
Ee:jnﬂe smHJ- [¢(z")e =z
? Arr 7,

J e P COS( '82[ COS 9) — cos( '82[]
E¢ = jn= .
g 271 sin &

Chapter 13
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Halt-Wavelength Dipole (/=4/2) [38]

T
(=412 7 o ib cos(zcos «9]
E* = E,=jn= .
’ 27r sin @

Infinitesimal Dipole (£ << A) [38]

/<<A

jpr
LE* = jn lpte sin @
Ay
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Elevation Plane Amplitude Patterns for a Thin Dipole [38]
(I = << MA4,02,3M/4,0)
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Two-Dimensional Pattern [38] (/=1.251)
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Electric Line Source:
The electric field radiated by an

electric line source 1s

2re
E: =—&Héz)(ﬁp)
- dwe

For far-field observations

poo=o [ 9 —j[/_ﬁmz]

Hy(pp) =

the electric field reduces to

Lp—x —J,BP
g e 8 nﬁ

277,8 \/7
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Magnetic Line Source:

The magnetic field radiated by a

magnetic line source is Magnetic:
m ];I 2 &
H' = L Hy” (Bp)
dou ™

For far-field observations

po>= [ 2 —j poiZ]

H(”) ( ﬁ /O) e 4
7P "
the magnetic field reduces to
Bp—> ,B —Jﬁp
H' = -1 13-101b
2n 27Z,B \/_ ( :
Copyright © 2011 by Constantine A. Balanis Chapter 13

All rights reserved Geometrical Theory of Diffraction



Using (13-34), (13-34a), (13-101a) and (13-101b),
and assuming normal incidence (f'=7/2), we can
write the electric field diffracted from a wedge as:

Soft Polarization:

=EN(Q,)D.(L.& & n) L e’ (diffraction)

/p

while the electric field radiated by an electric line

source 1s
,7 IB —Jﬂp
E:=-I (electric line source)
277 Jp
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By equating the previous two equations:

d i L 1 -
C=LE.(0,)D.(L.& ,¢& ’n)ﬁe JPp

\ J/

from diffraction (13-102a)
—Jh
_pe et 77/3 o

- ) 27r \/7

.
from electnc line source

and solving for /7, 1t leads to the electric EC of

8 o . |
I7 =- U;ﬁ e‘f”"*E_j(QD)DS(L,f‘,f*,n) (13-103a)
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Using (13-34), (13-34a), (13-101a) and (13-101b),

and assuming normal incidence (#'=7/2), we can

write the magnetic field diffracted from a wedge as:
Hard Polarization:

=H (O )D"(L,&,E n) % e ’”? (diffraction)
0

while the magnetic field radiated by a magnetic line

Source 1s
Vi L o
H? =-I" (magnetic line source)
21 27[,6’ Jp
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By equating the previous two equations:

d i B . 1 -
E:=E(Q,)D (L,& ,& ’n)ﬁe JjBp

. J/

from diffraction (13-102b)
: —jhp
O (LA W
T2 N21B p

Y
tfrom magnetic line source

.

and solving for I, 1t leads to the magnetic EC of

| A8 . |
I'=-7 ;’B e H(O))D (L&, n) | (13-103b)
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If the wedge of Figure 13-40 is of finite length 7, its
equivalent current will also be of finite length. The
far-zone field radiated by each can be obtained by
using techniques similar to those of Chapter 4 of [38].
Assuming the edge 1s along the z axis, the far-zone
electric field radiated by an electric line source of
length ¢ can be written using (4-58a) of [38] as

~Jpr /2
_ pe )
E° =]77’B sin & j [°(z"e’P %z (13-104a)
? drr o,
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Electric

. . > ¢ Bz 7
E; = Jn sin ¢ I 15(: )e’ﬁ Uz (13-104a)
Arr R

[? =constant =/ (z")

+1/2

ﬁe—jﬂr . o
ES = jn sin@ [; j e’ el e
Ay S,

Magnetic

+1/2

~jpr
.. pe . g
H) =] P sin & I ["(z2"eP70dz" (13-104b)
Arr R
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Using duality, the far-zone magnetic field radiated
by a magnetic line source of finite length can be

written as
—jpr +1/2
Pe . (13-104a)
H) :]’B sin & j I7(z ')e’ﬂ' cost 7"
drr s

For a constant equivalent current, the integrals of
(13-104a) and (13-104b) reduce to a sinc function.

sin(¢)
4
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Oblique Plane Wave Incidence EC

For oblique plane wave incidence diffraction
by a finite length / wedge, as shown 1n
Figure 13-41, the equivalent currents of
(13-103a) and (13-103b) take the form of:
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Oblique Incidence Diffraction a Finite Length Wedge
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A
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Fig. 13-41
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Electric Line Source: Soft Polarization

8 /4 i — ~ '
19 =~ N3B sgi0 \D.(& . m: )

A8 e . e 2
—_ ﬂ-ﬂ e—jﬂ'w—lE;(O)DS(5—)§+’n; ﬂo )e—j,B- Ccos 3,

7y

(13-107a)
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Magnetic Line Source: Hard Polarization

17/ 8 /4 i - g+ '
A ﬁ”ﬁ e T H!(0,)D, (L E s )

s'>>z' & . , : P |
Im ~ 7 ”ﬁ e—]iz',v—lH; (O)Dh(f_, §+,n;ﬁ0)e—]ﬁg cos f3,

—

p

(13-107b)
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Circular Loop
Equivalent Currents

(EC)
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Circular Loop Equivalent Currents

If the equivalent current 1s distributed
along a circular loop of radius a and 1t
1s parallel to the xy-plane, as shown 1n
the figure that follows, the field radiated

by each of the equivalent currents can

be obtained using the techniques of
Chapter 5, Section 5.3, of [38].
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Geometry for Circular Loop [38]

%’
\0 (X,y,Z)

Copyright © 2011 by Constantine A. Balanis Chapter 13
All rights reserved Geometrical Theory of Diffraction



Geometrical Arrangement for Far Field Radiation [38]
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Electric Equivalent Current

o N, ae_jﬂr 27 e | N _ 7 BasinBcos(d—a' '
Ep =—j = [ I;(#")cos(g— g )e/ " g

dzr 70 (13-105a)

If the current /;(¢") is constant, /;(¢") = I;

— jkr

E; — _j a)/uae [;j-zﬂCOS(¢ v)ejﬂasil19005¢'d¢v
4y 0
—Jpr
, .ouae | , .
E;=—] - I [27z]J1(,Ba sin 9)]
. ouae " - (13-106a)
Ej = =——1I}J,(asin0)
I/’
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Magnetic Equivalent Current

weae "
H ;” = J
4rrr (13-105b)
27T |
m ' ' Lasin @cos(P— '
| 17 (§) cos(g— g )e P g
0
. wsae -
Hj = [;J,(Basinb)
27 i
(13-106b)
m m aa)ge : ]ﬁl m * '
Ly =nH, =n 5 1;J,(Basmb)
]/’
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Amplitude Pattern: Circular Ground Plane
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Slope
Diftraction
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Slope Diffraction
When ¢ ' =0 or nx (grazing angle), the soft polarization

diffraction coefficient D"= 0. Thus the diffracted field,

for this polarization based on the regular diffraction

coefficient D-, according to the following equation

=E'(Q) - A(S ,8) e/’
1S equal to zero. There are higher-order diffraction
coefficients that account for diffraction based on the
rate of change (slope) of the field at the point of
diffraction. These coefficients are referred to as

slope diffraction coefficients, and will be introduced later.
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Slope diffracted fields are not significant for hard
polarization cases, in which higher-order regular
diffractions are more significant than slope
diffractions; however they contribute 1n soft
polarization cases because this polarization does
not usually support higher-order diffractions. The
general formulation for slope diffracted fields 1s to
determine the slope of the incident field at the
point of interest and the multiply 1t by the
appropriate UTD slope diffraction coefficient.
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Wedge Geometry for Slope Diffraction

Observation
Source

d
on s d¢

Fig. 13-42
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Slope Diffraction

e _ 1| oUQy) || D, \/ Pe_,ip

. Bl on || 04 |\s(p,+s) (13-108)
UACs) _ L0V _ Gope of incident field
on s 09 o, (13-108a)
oD

s.h

= slope diffraction coefficient

0¢ (13-108c¢)
U represent £ (for soft) and /A (for hard).
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Slope Diffraction

pi_ LIEQ)|[D | [ p
Bl on JLog [Ns(p.+s)

| y (13-108)
ok (Qp) _ 1 0k | =slope of incident field

on s'09' o,

D (13-108a)
= = slope diffraction coefficient

09

(13-108¢)
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Slope Diffraction

oL oH'(0,)|[eD, 1| p. i
jpl on || o4 |\s(p.+s)
,- ; (13-109)
o (Qp) _ 1 0H | =slope of incident field
on s' 09" o,
- (13-109a)

" = slope diffraction coefficient

0p

(13-109¢)
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Slope Diffraction
In general, the total diffracted field can be found using

U;?h = {Ul (»QD )D,s.?h + 1 |:8UZ(QD):H:8D5J? :l}

ip on ol
(13-110)
> IOC e‘]ﬂ-s
s(p, +5)

where the first term represents the contribution to the total
diffracted field due to the magnitude of the incident field
and the second accounts for the contribution due to the
slope (rate of change) of the incident field. U represents
either the electric for the soft polarization and the magnetic

field for the hard polarization.
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Slope Diffraction Coefficient for Soft (Hard) Polarization
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Fresnel Transition Function

F(X)=2jX| X - j2JXe™ [ e dr
Jx ]

2 X [1-F(X)]

+ for soft polarization

- for hard polarization

(13-111c¢)
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Computer Program (SWDC)

Slope Wedge Diffraction
Coefficients
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SWDC (SCDCS, SCDCH, R, PHID, PHIPD, BTD. EN)

SCDCS = Complex Diffraction Coefficient (Soft)
SCDCH = Complex Diffraction Coefficient (Hard)
R = Distance Parameter por p' (in A)

PHID = ¢ (in degrees)

PHIPD = ¢' (in degrees)

BTD = ' (incidence angle; in degrees)

FN =n [WA = (2-n)x]
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Higher-Order
Diftractions
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For structures with multiple edges, coupling 1s
introduced 1n the form of higher-order
diffractions. To illustrate this point, let us
refer to Figure 13-43a where a plane wave of
hard polarization, represented magnetic field
component parallel to the edge of the wedges,
1s incident upon a two-dimensional PEC
structure composed of three wedges.
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Higher-Order Diffractions from 2-D Wedge

Plane Wave Incidence

\*
¢\\‘
Fig. 13-43 (a)
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Higher-Order Diffractions from 2-D Wedge

Plane wave incidence

Fig. 13-43 (a)
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The diffraction mechanism of this system can be outlined
as follows: The plane wave incident on wedge 1,
represented by wedge angle WAL, will be diffracted as

shown 1n the Figure 13-43a. This 1s referred to as first-

order diffraction. The field diffracted by wedge 1 in the
direction of wedge 2, represented by wedge angle WA2,
will be diffracted again, as shown in Figures 13-43a and
13-43b. This 1s referred to as second-order diffraction,
because it 1s the result of diffraction from diffraction. In
turn the field diffracted from wedge 2 toward wedges 1
and 3 will be diffracted again.
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The same procedure can be followed for
second-order diffractions from wedge 3 due
to first-order diffractions from wedge 1.
Second- and higher-order diffractions are all
referred to as higher-order diffractions, and
they account for coupling between the
edges and are more important for bistatic
than monostatic scattering.
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First-Order Diffractions
From Edge #1
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Higher-Order Diffractions from 2-D Wedge
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Fig. 13-43 (b)
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Higher-Order Diffractions from 2-D Wedge
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Fig. 13-43 (b)
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Following the procedures that have been
outlined for diffractions from two-dimensional
PEC wedges, the first-order diffractions from
wedge 1, first-order diffractions from wedge 1
toward wedge 2, and second-order diffractions
from wedge 2 due to first-order diffractions
from wedge 1, can be written, using the

geometries of Figures 13-43aand 13-43b, as:
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Uniform Plane Wave
Hard Polarization (2-D)

First-Order D1

Y

raction Edge #1

_11 H(Ql [&}'&}’Dlh(rbl)”l?wl'?nl)]

:&1H11(Q1) & & 9

Yy y

D(l
Hyy = +a,H{(Q)s

—11
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First-Order Diffractions
From Edge #1
Toward Edge #2
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First-Order Diffraction Edge #1 Toward Edge #2

lifi(rl =5y, =0,m)

1=5.¥4=0

| Di(s..—w..n)
:+d}-H11(Q1)< (574 1)>

+D; (s,,y,,1,)

H (1= sy, =0,n,)

n=s1,4,=0
- j ) N
Vl (S1> —Yi n1)

= +d1,H1i(Ql)< | |
, C"V; (S1>l//1>n1),

(13-112b)

Equation 13-112b represents the total diffracted field;
half of it 1s the incident diffracted field and the
other half 1s the reflected diffracted field.
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Second-Order Diffractions
From Edge #2
Due to First-Order Diffractions
from Edge #1
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Second-Order Diffraction from Edge #2

d?2 i A A J , l B
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2 T r
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d2 ~ H1 (Ql) i ' r '
ﬂyz - +a}.- D {VBI(Sla_Wlanl)-l_VB (S1> WIanl)}
| e P
AA i r
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S =+a,

> H] : ' , '
He IEQI) [VB1(S1»_W1>’71)+VB (51»9”1»”1)}

. | o IPr
.[D;(sz,wz,nz) + D) (Sz,wz,nz)]
7,
a2 ~ l j i ' . '
]iJ’z = +a3’ EHIZ (Ql) |:VBI’1(S1> _wlp nl) + VZ; (Sl> Wl, 771):|
. e—jﬁ"z
: [ZDE(S2 RV ’72)]
r,

e

d2 A orri i ' r '
Ii;-z = +CIJ.H1(Ql)[VB(Sla_WPHI) + VB (51»W1>’71):|
L (13-112c¢)

.Dé(S;szanz)

A
}2
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The % factor 1n the development of (13-112c¢) 1s used
to represent the incident diffracted field of (13-112b)
from wedge 1 toward wedge 2.

The procedure needs to the repeated for first- and
second-order diffractions due to the direct incidence
of the plane wave to wedge 2. The method was
developed for hard polarization as there are no
higher-order diffractions for soft polarization since
the diffracted field from any of the wedges toward
the others will be zero due to the vanishing of the
tangential electric field along the PEC surface of the
structure.
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Higher-Order Diffractions
Self-Consistent Method
or
Successive Scattering Procedure
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Finite Thickness Edge for Multiple Diffractions
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n
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N\ N N\ N
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§ § ® § § " Source
i—d—& Source e d > e
N N N N
\ N N\ N
\ N\ : N \
N N Vio= 5+¢ - \
. Yip=29 . .
(a) Sourcelncidence y,-»-4 (b) Diffraction By Edge #1
¥i2=0
(c) Diffraction By Edge #2 Fig. 13-44
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Diftractions
From Edge #1
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U (r,4) = Uy (0))
s.h T . | B
.D167 L, W, = 54_ ¢9V/10 — 59”1 Aloe B

+%U;’7(;»2 =d,¢=0)

.Dls-’ih (1’1291//12 =7 _¢>W1'2 = Oanl)Alz(’i )e "

(13-113a)
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Diftractions
From Edge #2
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1
U‘f:h 7, -
(1, 9) >

Dy Ly, = by, =0.m, ) Ay (r)e > (13-113b)

Lfl.s.__h(rl — d,¢: 72_)

U(0)

5.1 T ' -J Py
'Dld] (L10>l//10 = 5+¢9W10 = 59”1)‘4108 7’

Uls,h(rl , ¢) — 1
+- U, =d.$=0)
'Dlsih (L12>W12 =7 _¢>W1'2 = 0»”1)Alz(rl)e_jﬁr1 r=d
- =
(13-113a)
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Uls,h(rl — d)¢ — 72') = l]OS]z(Ql)

< h RY/ 2 .
'Dlt)] (LIO>WIO = 79%0 = §9nleIOe p

+%U;-’l(,»2 =d, ¢ =0) (13-114a)

.Dlsih (L12’W12 =0, l/jl'z =0, nl)Alz(”i = d)e_j'gd
Uy (ry =d,¢=0)=U" (1 =d.¢ = 7)

1 s.h ' -
'{EDzil (L21»W21 =0,y = O»”z)Azl(”E =d)e Jﬂd}

(13-114b)
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Equations (13-114a) and (13-114b) can be

written, respectively, in simplified form as

U (n=d.¢=7)|=U"(O)Ty
[0 = .6 = Ok |

(13-115a)

U (r,=d.¢=0)|=| U (r=d.¢=m)R5}"
(13-115b)
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where
S.h s.h 372. '
Tlorl :Dm] (L109W10 :7#/10 :5»’71)
Ay (17 = d)e ™

7" = transmission coefficient from wedge 1

(13-115¢)

toward wedge 2 due to radiation from main source

s.h 1 s.h '
Rlil = EDD] (lea'//lz =0y, = Oanl)

A = d)e P (13-115d)

R’;" = reflection coefficient from wedge 1

toward wedge 2 due to diffractions from wedge 2
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Rigih - lDé‘ih (Lzlan - ODWél - Oanz)

2 (13-115¢)

-4, (1, = d)e ™
R;" = reflection coefficient from

wedge 2 toward wedge 1 due to
diffractions from wedge 1
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The self-consistent pair of (13-115a) and (13-115b)
constains the two unknowns U (7; =d,¢ = ) and

Us"(r, =d,¢ =0) that are needed to predict
the total diffracted field as given by (13-113a) and
(13-113b). That 1s:

U (i =d.¢=m) |=U;"(ODTY’ (13-115a)
+[U3" (5 =d.g=ORY |

[U;‘h(i‘z =d,p= 0)] = [Uf”l(r1 =d,¢= ﬂ)Rgih] (13-115b)
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(Ui =dg=m) [=US @I s,
+ U (r, =d,¢ = O)RY' |

Rearranging the terms in (13-115a) we can
rewrite (13-115a) as

[Uf’h(i’l =d,p= ﬂ)] B [U;h(’”z =d.¢= O)Rlsih]
=U" ()T
U (= d, ¢ =)~ RUS (1, = d = 0)
= U ()T
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Us(r,=d,¢=7)-R3U"(r,=d, ¢ =0)
=Us"(Q)T;"

U (r,=d,¢g=0)=U""(r,=d,¢=7)R;" (13-115b)

Substituting U" (1, = d, ¢ = 0) from (13-115b)

into first equation, we can write 1t as

U (1 = d.g = 7)= RYRIU (1 = dg = )

=U" (0T
which when solved for U;”"(r, = d,¢ = 7) reduces to
T

U (r=d,¢=7)=U"(0,) (13-116a)

s.h ps.h
1- R12 R21
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When (13-116a)
I

] ] (13-115a)
s.nps.h
o RIZ Rzl

U (n=d,¢=7)= Ué"h(Ql)1

1s substituted into (13-115b)
U (r,=d, ¢ =0)=U""(r. =d,¢ = 7)R" (13-115b)
reduces 1t to

s.hps.h
]10 R2l
s.hps.h (13-116b)
o R21 Rlz

Us"(r, =d, ¢ =0)=U"(0,) 1
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Summary

Ts,h
U (r=d,¢g=r)=U"(0 =
1 ( 1 ¢ ) 0 (QI)I—R;ithsz’h

(13-116a)

s.h ps,h
];O RZl
s.h ps.h
I = Rzl Rlz

U3 (1, = d,¢=0)=U;"(0))

(13-116b)
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Another way to get (13-116a) and (13-116b) 1s
to solve (13-115a) and (13-115b) stmultaneously.

U (r=d,¢p=n)-R5U"(r,=d, ¢ =0)

— U(-)S‘:h(Ql

s.h
)

(13-115a)

R'UM (n=d,¢=m)~Uy"(r,=d,§=0)=013115p

which reduce to

Ts,h

Ui = d, ¢ = 1) = U (0, —2

s.hps.h
1_R21 Rlz

s.hps.h
TiO R21

U3, =d.¢=0)=U"(Q)

s.h ps.h
_Rzl Rlz
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When expanded, 1t can be shown that (13-116a) and
(13-116b) can be written, by letting x, = R;;"R", as
a geometrical progression series of the form

1 2 3
=1+x,+x +x +......
1 0 0 0
—_ xO
l]s_,/'z p o= d, — O — U.s_./z Ts,h
5= d.$=0)=U;"(O)T, S
2 3
[l+xO +Xx; +x;+..... }
sshye., _ L . s.h s.h ps.h
2 3
: [1+x0+x0 + X, +..... ]
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Each term of the geometrical series can be related to

an order of diffraction by the corresponding wedge.
In matrix form, the self-consistent set of equations,

(13-115a) and (13-115b), can be written as

1 -RY| U (r=d.g=n)| |USO)T,

_—R;ff 1 _U;’h(r2 =d,p = 77)_ 0 i
(13-118)

which can be solved using standard matrix inversion.
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Overlap Transition
Region
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The field diffracted by Edge #1 towards
Edge #2 creates a Transition Region (TR),
as shown m Figure 12-45, over which the
diffracted field 1s non-ray optical and the
second-order and successive diffractions are
not accurately predicted using the
traditional GTD/UTD. The same is true for
diffractions from other wedges, as shown 1n
the graphs that follow.
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Transition Region

E'(near grazing)

S
; . ~ ~
E'(grazing) ~ ~ \
~
S\
/ ‘
Fig. 13-45
Copyright © 2011 by Constantine A. Balanis Chapter 13

All rights reserved Geometrical Theory of Diffraction



Transition Region

E (near grazing)

—

E' (grazing)

—
—

Fig. 13-45
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To resolve the 1ssue of the non-ray optical nature of the first-
order diffractions, and the mnaccurate predictions by standard
GTD/UTD of the higher-order successive diffractions by
wedges, the following two methods can be used.

1. Extended Spectral Theory of Diffraction (ESTD) [64]

2. Extended Physical Theory of Diffraction (EPTD) [65]

* GTD and UTD are considered to be somewhat heuristic,
but more general and less cumbersome 1n their application
to multiple diffractions.

* ESTD [64] and EPTD [65] are more rigorous and accurate,
although less general and more complex.

* The use of GTD/UTD for multiple diffractions has already
been addressed and 1illustrated.
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The use of the GTD/UTD for multiple diffractions
has already been addressed and 1llustrated.

The GTD/UTD fails 1n overlapping transition
regions which occur for incidence at and near
grazing and observation 1n the forward scatter
region. For these cases, other methods must be
utilized; two of those are the ESTD [64] and
EPTD [65]. Both of these methods are considered
as spectral methods, and both involve formulating
appropriate high-frequency approximations for the

double-diffracted field of a double wedge.
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The ESTD [64] 1s an extension of the STD [66]. Using
the ESTD, the current density induced on the scatter of
interest 1s transformed 1n the spectral domain. The
radiation integral 1s then asymptotically evaluated in the
spectral domain after the induced current density 1s
multiplied by a spectral diffraction coefficient. The
original STD was limited to a half-plane and aperture
scattering for plane wave incidence. The ESTD extends
the STD to general double-wedge configuration, and 1t
can be used for plane, cylindrical and spherical wave

incidence for both normal and oblique 1ncidence.
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The EPTD [65] i1s an alternative transition region method
based upon a different evaluation of the surface radiation
integral. The induced current density is approximated
using the PTD fringe currents [67], whereas the ESTD
used the UTD diffraction coefficients. The resulting
radiation integral 1s evaluated asymptotically to obtain
the second-order field diffracted by the double wedge
structure. The EPTD formulation is limited to plane-
wave incidence, far-field observation in the normal plane
of the structure. As with the ESTD, the EPTD doubly-
diffracted field expression can be greatly simplified for
certain geometries, such as for the strip.
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To demonstrate the concepts of near grazing angle
incidence diffraction, a numbers of examples are
considered for monostatic and bistatic scattering for both
soft (TM?) and hard (TE?) polarizations [68],[69]. For
monostatic scattering the patterns are illustrated in Figures
13-46(a,b) for a strip of width w = 2A. A width of 2A 1s
chosen for all cases so that the GTD/UTD diffraction
coefficients are valid. For the soft polarization only first-
order UTD diffractions are considered since higher-orders
are not applicable; however for the hard polarization up to
fourth-order UTD diffractions are included. It is clear that
the results of all three methods (MM, EPTD, UTD) for

both monostatic cases are in very good agreement.
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Monostatic RCS by a 2-D PEC Strip
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Fig. 13-46(a)
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Monostatic RCS by a 2-D PEC Strip

155
0 - Moment Method
=== EPTD
- 1 - UTD(1 - 4)
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Fig. 13-46(b)
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The bistatic scattering results for incidence angles of
near grazing (¢, =170°) and away from grazing

(¢, =135°) are shown in Figures 13-47(a,b) and
13-48(a,b), respectively. As expected, because of the
UTD diffracted fields near grazing angle (¢, =170°) are
non-ray optical, the patterns of the UTD results are not
in very good agreement with those of the MM and
EPTD as indicated in Figures 13-47(a,b) for both
polarizations. However the comparison of not near-
grazing incidence (¢, =135°) the agreement of all three
methods is very good for both polarizations, as indicted
in Figures 13-48(a,b).
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Bistatic RCS o/A (dB)

Bistatic RCS by a 2-D PEC Strip
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Bistatic RCS by a 2-D PEC Strip
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Bistatic RCS by a 2-D PEC Strip
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Bistatic RCS o/A (dB)

Bistatic RCS by a 2-D PEC Strip
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13.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia
resources are included for the review, understanding and presentation of the
material of this chapter.

* Matlab computer programs:

a. WDC: (Both Matlab and Fortran). Computes the first order wedge diffraction
coefficient based on (13-89a)-(13-90b). The initial Fortran algorithm was developed
and reported in [53].

b. SWDC: (Both Matlab and Fortran). Computes the first slope wedge diffraction
coefficient based on (13-111a)-(13-111¢). The initial Fortran algorithm was
developed and reported in [53].

¢. PEC Wedge: Computes, based on the exact solution of (13-40a), the normalized
amplitude pattern of a uniform plane wave incident upon a two-dimensional PEC
wedge of Figure 13-13.

d. PEC _Strip_Line UTD: Computes, using UTD, the normalized amplitude radiation
pattern of a line source based on the UTD of Example 13-4. Itis compared with that
based of the Integral Equation (IE) of Sections 12.2.2-12.2.8 and Physical Optics (PO)
of Section 11.2.3.
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e. PEC _Strip SW_UTD: Computes, using UTD, the TM? and TE? 2D scattering width
(SW), monostatic and bistatic, of a PEC strip of finite width, based on the UTD of
Example 13-5. It is compared with that of the Integral Equation (IE) of Section 12.3.1
and Physical Optics of Section 11.3.1, and Figures 12-13 and 11-4.

f. Monopole GP_UTD: Computes, using UTD, the normalized amplitude radiation
pattern of a 1/4 monopole on a rectangular or circular ground plane based on UTD and
Figures 13-32 and 13-37.

g. Aperture GP_UTD: Computes, using UTD, the normalized amplitude radiation pattern
of a rectangular or circular aperture, with either a uniform or dominant mode aperture
field distribution, on a rectangular ground plane based on UTD and Figure 13-32 where
the monopole is replaced by an aperture as shown in Figure P13-41.

h. PEC_Rect RCS_UTD: Computes, using UTD, the TE* and TM~ bistatic and
monostatic RCS  of a PEC rectangular plate using UTD. It is compared with the
Physical Optics (PO) of Section 11.2.3.

i. PEC_Circ_RCS_UTD: Computes the TE* and TM* monostatic RCS of a PEC circular
plate using UTD. It 1s compared with the Physical Optics (PO) of Chapter 11 and
Problem 11.24.

j- PEC _Square Circ_RCS _UTD. Computes, using UTD, the TE* and TM* monostatic
RCS of PEC square and circular plates, which have the same area and equal maximum
monostatic RCS at normal incidence. The UTD patterns of the two plates, square and
circular, are compared with the Physical Optics (PO) of Chapter 11.

* Power Point (PPT) viewgraphs, in multicolor.
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