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Abstract

In applying GTD (ray techniques) to electromagnetic diffraction problems, some elemen-
tary knowledge of differential geometry is necessary. This report is written for those who
are not familiar with this subject and wish to acquire a working knowledge in a rapid
fashion. For more advanced readers, the report may provide a convenient collection of
formulas in differential geometry relevant to GTD applications.
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Preface

The material presented in this report was originally prepared for the Appendix of a monograph
on GTD (which explains the letter "A" in section and figure numbers*. A small number of
ditto copies of the Appendix were circulated in 1976. The monograph is far from completion.
A surprisingly many requests have been received for the Appendix. Hence the Appendix is
published herein as a technical report. The author appreciates comments and responses from
readers.

*Note on Retyping: The letter "A" prefix used in the original document’s section and figure numbering (e.g.,
A.1, Figure A-1) has been removed in this retyped manuscript for simpler referencing.
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1 Introduction

For understanding and application of ray techniques in electromagnetics, it is necessary for the
reader to have some elementary knowledge of differential geometry of curves and surfaces.
This report is written for those readers who lack this knowledge. For easier comprehension
of the subject, we will use ample examples and illustrations, while a few abstract concepts
and proofs are omitted. In the first part (Sections 2–6) we discuss curves, and in the second
part (Sections 7–12), surfaces. Key formulas and results are summarized in Section 13. All the
materials, except for part of Sections 10 and 11, can be also found in standard textbooks of
differential geometry. *

*We recommend two books: B. O’Neill, Elementary Differential Geometry, Academic Press, New York, 1966; and
D. J. Struik, Differential Geometry, 2nd Edition, Addison-Wesley Publishing Co., Reading, Mass., 1961.
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2 Representation of Curves

A curve may be pictured as a trip taken by a point in motion. Let us first concern ourselves with
the description of the position of a point in three-dimensional space. In terms of the Cartesian
coordinates (x , y, z) of the point, a position vector r⃗ is defined by

r⃗ = x x̂ + y ŷ + zẑ (2.1)

where ( x̂ , ŷ , ẑ) are unit vectors in the direction of the increasing (x , y, z), respectively. When
the point is in motion, the locus traced out by the tip of the vector is a curve (Figure 1) and
can be expressed as a vector r⃗ function of a parameter t in some open interval:

r⃗(t) = (x(t), y(t), z(t)); t1 < t < t2 (2.2)

(a) (b)

Figure 1: Curve defined by the tip of a vector in motion.

For engineers and physicists, it is convenient to think of t as the time, and we will use this
association throughout this report. Let us now consider several examples of curves.

(i) Straight lines. The simplest curve in three-dimensional space is a straight line given by
the equation

r⃗(t) = a⃗+ b⃗t = (a1 + b1 t, a2 + b2 t, a3 + b3 t). (2.3a)

where a⃗ and b⃗ are constant vectors, and b⃗ is not identically zero. Let the angles between the
line and the three rectangular coordinate axes be (θ1,θ2,θ3). Then the direction cosines of the
line are given by

cosθn =
bn

(b2
1 + b2

2 + b2
3)1/2

, n= 1,2, 3

Alternatively, (2.3a) may be written as

¨

y = a2 + (b2/b1)(x − a1)

z = a3 + (b3/b1)(x − a1)
(2.3b)

provided that b1 ̸= 0.

(ii) Circular helix. A point travels in the x − y plane around a circle of radius a and rises
along the z-direction at a constant speed b. Its trip is a circular helix:

r⃗(t) = (a cos t, a sin t, bt) (2.4)
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When b > 0, the helix is right-handed (Figure 2); when b < 0, the helix is left-handed.

(iii) Conics. Let us construct a plane curve C as follows: In the xz-plane, let L be a straight
line (directrix) parallel to the x-axis, and F be a point (focus) on the z-axis (Figure 3). A typical
point P on C satisfies the condition

P L = e · PF (2.5)

where P L is the distance from P to the straight line, and PF is the distance to F . The proportional
constant e in (2.5), called eccentricity, is a positive real number. Curve C is a

• parabola, if e = 1

• ellipse, if e < 1

• hyperbola, if e > 1

The above three curves are known as conics, because they can be obtained as a section of a
circular cone by a plane. We list below representations of these curves.

Figure 2: A right-handed circular helix.

Figure 3: Construction of a conic Γ .

Parabola. (Figure 4).

r⃗ = (2 f t, 0, f t2) (2.6a)

z =
x2

4 f
(2.6b)

R= 2 f (1− cosψ)−1, for R≥ 0 (2.6c)

7



Mathematics Notes

eccentricity: e = 1 (2.7)

foci: (x = 0, z = f ) (2.8)

Ellipse (Figure 5).

r⃗ = (a cos t, 0, b sin t) (2.9a)
� x

a

�2
+
� z

b

�2
= 1 (2.9b)

R= a2[b+
p

b2 − a2 cosψ]−1, assuming b > a (2.9c)

eccentricity: e =
Æ

1− (a/b)2 (2.10)

foci: (x = 0, z = ± f ), where f =
p

b2 − a2 (2.11)

Hyperbola (Figure 6).

r⃗ = (a sinh t, 0, b cosh t) (2.12a)
� z

b

�2
−
� x

a

�2
= 1 (2.12b)

R= a2[±b−
p

a2 + b2 cosψ]−1 (2.12c)

eccentricity: e =
Æ

1+ (a/b)2 (2.13)

foci: (x = 0, z = ± f ), where f =
p

a2 + b2 (2.14)

In (2.12c), the plus (minus) sign applies to the right- (left-) half hyperbola.

Figure 4: Parabola.
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Figure 5: Ellipse.

Figure 6: Hyperbola.
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3 Tangent, Arc Length, and Reparameterization

Consider two points moving in space following an identical trajectory. We would say that they
generate two identical curves. However, they may move at different speeds. To account for this
difference, we will introduce a tangent vector. For a curve r⃗ = r⃗(t), its tangent vector at the
point r⃗(t) is the velocity vector

d r⃗
d t
=
�

d x(t)
d t

,
d y(t)

d t
,

dz(t)
d t

�

(3.1)

evaluated at the instant t. Its speed is the magnitude of the velocity vector:

v(t) =

�

�

�

�

d r⃗
d t

�

�

�

�

=

√

√

√

�

d x
d t

�2

+
�

d y
d t

�2

+
�

dz
d t

�2

. (3.2)

A curve with v(t)≡ 1 for all t is called a unit-speed curve; otherwise, it is an arbitrary-speed
curve. Later, for a given curve with one speed, we may construct many "new" curves which
have the same trajectory as the original one but travel at different speeds. For applications in
electromagnetic diffraction problems, we often use unit-speed curves.

The distance travelled by a moving point is the arc length along a curve. In physics, the
differential distance dσ is equal to the product of the speed and the time interval: dσ = v d t.
Thus, we define the arc length of a curve r⃗ = r⃗(t) from a reference instant t0 to a variable
instant t as

σ(t) =

∫ t

t0

�

�

�

�

d r⃗
d t

�

�

�

�

d t. (3.3)

Clearly, σ(t = t0) = 0, and σ(t) can be positive or negative depending on whether t > t0 or
t < t0.

Consider the circular helix in (2.4) as an example. Its velocity (or tangent) vector is

d r⃗
d t
= (−a sin t, a cos t, b) (3.4)

and its speed is
�

�

�

�

d r⃗
d t

�

�

�

�

=

√

√d r⃗
d t
·

d r⃗
d t
=
p

a2 + b2 = c. (3.5)

Assuming c ≠ 1, then the helix, as given in (2.4), is an arbitrary-speed curve. Its arc length,
measuring from t = 0, is

σ(t) =

∫ t

0

c d t = c t. (3.6)

At this point, many readers may have already realized that a simple change of variable t = σ/c
in (2.4) gives rise to an equation r⃗ = r⃗(σ) which is a unit-speed curve. We have not changed
the helix curve itself, we have changed its speed by passing from one parameter to another.
Such a process is called reparametrization. Clearly, as many reparametrizations of a given
curve exist as there are transformations for parameter t.

Of all reparametrizations, we are particularly interested in the one that results in a unit-
speed curve. It can be shown that, for a curve r⃗ = r⃗(t), the reparametrization r⃗ = r⃗(σ)
with

t = t(σ) (3.7)

describes a unit-speed curve. In other words, a unit-speed curve is a curve whose arc length is
its parameter.
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4 Frenet Formula for Unit-Speed Curves

For a unit-speed curve r⃗ = r⃗(σ), the unit tangent vector

t̂ =
d r⃗
dσ

(4.1)

indicates the direction of turning along the curve. Now, let us introduce two new parameters:
(i) curvature κ, which measures the rate of turning; and (ii) torsion τ, which measures the
rate of twisting. Consider the derivative of the unit tangent vector:

d t̂
dσ
=

d2 r⃗
dσ2

= κn̂. (4.2)

Here the unit vector n̂ is in the direction of d t̂/dσ and is called normal. Since t̂ · t̂ = 1,
differentiation of this identity gives

t̂ ·
d t̂
dσ
= 0, or t̂ · n̂= 0. (4.3)

Hence n̂ is orthogonal to t̂.* The magnitude of d t̂/dσ is curvature κ, which by definition is
nonnegative. As the curvature increases, the turning of the curve becomes sharper. From (4.2)
we can deduce an alternative formula for curvature, namely,

κ(σ) = +

�

d2 r⃗
dσ2
·

d2 r⃗
dσ2

�1/2

(4.4)

where the square root should take a nonnegative value.
At each point on a curve we have two orthonormal vectors t̂ and n̂. Define a third one,

binormal b̂, such that
b̂ = t̂ × n̂. (4.5)

Then (n̂, b̂, t̂) form a right-handed orthonormal basis for the three-dimensional space.† In
general, they vary continuously along the curve, according to the turning and twisting of
the curve. For this reason (n̂, b̂, t̂) are known as the moving trihedron. In the study of the
geometry of a curve, it is often more convenient to use (n̂, b̂, t̂) as the base vectors instead of
( x̂ , ŷ , ẑ), because the former contains information about the curve while the latter does not.
The planes spanned by (n̂, b̂), (b̂, t̂), and ( t̂, n̂) are called normal plane, rectifying plane, and
osculating plane, respectively (Figure 7).

One of the most important applications of the moving trihedron of a curve concerns the
expression of the derivatives of (n̂, b̂, t̂). Consider first d b̂/dσ, which measures the rate of
change of the osculating plane. The differentiation of b̂ · t̂ = 0 leads to

d b̂
dσ
· t̂ = −b̂ ·

d t̂
dσ
= −κb̂ · n̂= 0 (4.6)

where we have made use of (4.2). The differentiation of b̂ · b̂ = 1 gives

d b̂
dσ
· b̂ = 0. (4.7)

*Since the curve has a constant speed (unit speed), the "acceleration" d2 r⃗/dσ2 must be orthogonal to its velocity
vector.

†Usually, the three vectors are written in the order of ( t̂, n̂, b̂). For our application, the order (n̂, b̂, t̂) is preferred.

11



Mathematics Notes

Figure 7: Moving trihedron of a curve..

From (4.6) and (4.7) we know that d b̂/dσ is orthogonal to both b̂ and t̂ and, therefore, in the
direction of n̂. Let us write it as

d b̂
dσ
= −τn̂ (4.8)

where the torsion τ can be either positive or negative. For a planar curve, b̂(σ) points to a
constant direction and, consequently, τ(σ) = 0. Thus, τ measures the twisting of a curve from
a planar one. Similar to the curvature formula in (4.4), we will derive a more explicit formula
for τ. Starting with (4.8), we have

τ(σ) = −n̂ ·
d b̂
dσ
= −n̂ ·

d
dσ
( t̂ × n̂)

= −n̂ ·
�

t̂ ×
dn̂
dσ

�

= −
1
κ

d2 r⃗
dσ2
·
�

d r⃗
dσ
×

d
dσ

1
κ

d2 r⃗
dσ2

�

=
1
κ2

d r⃗
dσ
·

d2 r⃗
dσ2
×

d3 r⃗
dσ3

or, when (4.4) is used,

τ(σ) =
d r⃗
dσ
·
�

d2 r⃗
dσ2
×

d3 r⃗
dσ3

��

d2 r⃗
dσ2
·

d2 r⃗
dσ2

�−1

(4.9)

Next let us consider the representation of dn̂/dσ in terms of the moving trihedral. Its
general form is

dn̂
dσ
=
�

dn̂
dσ
· n̂
�

n̂+
�

dn̂
dσ
· b̂
�

b̂+
�

dn̂
dσ
· t̂
�

t̂. (4.10)

Differentiation of n̂ · n̂= 1 gives
dn̂
dσ
· n̂= 0. (4.11)

Differentiation of n̂ · b̂ = 0 gives

dn̂
dσ
· b̂ = −n̂ ·

d b̂
dσ
= −n̂ · (−τn̂) = τ. (4.12)

Differentiation of n̂ · t̂ = 0 gives

dn̂
dσ
· t̂ = −n̂ ·

d t̂
dσ
= −n̂ · (κn̂) = −κ. (4.13)
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Substituting (4.11), (4.12), and (4.13) into (4.10) we have

dn̂
dσ
= τb̂−κ t̂. (4.14)

Combining (4.2), (4.8), and (4.14), we have a set of equations describing the motion of the
moving trihedron along a unit-speed curve:

dn̂
dσ
= τb̂−κ t̂ (4.15a)

d b̂
dσ
= −τn̂ (4.15b)

d t̂
dσ
= κn̂ (4.15c)

Equation (4.15) is known as Frenet formula or Serret-Frenet formula, which was indepen-
dently derived by F. Frenet and J. A. Serret around 1850.

In summary, at each point σ on a unit-speed curve r⃗ = r⃗(σ), there are five important fields:
(i) the moving trihedron (n̂, b̂, t̂), which may be computed from (4.2), (4.5), and (4.1); and,
(ii) the curvature κ and the torsion τ, which may be computed either from (4.2) and (4.8), or
more directly from (4.4) and (4.9). The variations of (n̂, b̂, t̂) along the curve are described by
the Frenet formula in (4.15).

Let us give an example to illustrate the computation of the Frenet apparatus. In terms of
the arc length σ, a unit-speed circular helix has the representation

r⃗(σ) =
�

a cos
σ

c
, a sin

σ

c
,

b
c
σ

�

(4.16)

where c =
p

a2 + b2 and a > 0. The unit tangent is

t̂(σ) =
d r⃗
dσ
=
�

−
a
c

sin
σ

c
,

a
c

cos
σ

c
,

b
c

�

(4.17)

and
d t̂
dσ
=
�

−
a
c2

cos
σ

c
,−

a
c2

sin
σ

c
, 0
�

.

Recalling (4.15c) we have

κ(σ) =

�

�

�

�

d t̂
dσ

�

�

�

�

=
a
c2

(4.18)

n̂(σ) =
�

− cos
σ

c
,− sin

σ

c
, 0
�

. (4.19)

Note that n̂ always points straight to the axis of the cylinder on which the helix lies. As sketched
in Figure 8, the osculating plane determined by t̂ and n̂ is formed by wiggle lines. The binormal
is

b̂(σ) = t̂ × n̂=
�

b
c

sin
σ

c
,−

b
c

cos
σ

c
,

a
c

�

(4.20)

and its derivative is
d b̂
dσ
=
�

b
c2

cos
σ

c
,

b
c2

sin
σ

c
, 0
�

. (4.21)

From (4.15b), it follows immediately that

τ(σ) =

�

�

�

�

d b̂
dσ

�

�

�

�

=
b
c2

which is positive for a right-handed helix (b > 0), and negative for a left-handed helix (b < 0).
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Figure 8: Moving trihedron of a right-handed circular helix.
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5 Frenet Formula for Arbitrary-Speed Curves

The discussion in the previous section applies to unit-speed curves r⃗ = r⃗(σ) with σ being the
arc length. For an arbitrary-speed curve r⃗ = r⃗(t), its speed

v =

�

�

�

�

d r⃗
d t

�

�

�

�

=

√

√

√

�

d x
d t

�2

+
�

d y
d t

�2

+
�

dz
d t

�2

(5.1)

is not necessarily unit. In order to use the formulas in Section 4 and also those to be presented
in Section 6, we may exercise the arc length reparametrization by letting

t = t(σ) (5.2)

and obtain a new representation

r⃗ = r⃗(t = t(σ)) = R⃗(σ) (5.3)

For example, in the circular helix discussed in (2.4) and (4.16), we have

r⃗(t) = (a cos t, a sin t, bt)

R⃗(σ) =
�

a cos
σ

c
, a sin

σ

c
, b
σ

c

�

.

When there is no confusion, we will write r⃗(σ) as r⃗(σ)

r⃗(σ) =
�

a cos
σ

c
, a sin

σ

c
, b
σ

c

�

.

When this convention is used, we should remember that r⃗(σ) is obtained from r⃗(t) via the
transform in (5.2), but not by a simple substitution t = σ. After the arc length reparametrization,
those formulas in Sections 4 and 6 can be applied to r⃗ = r⃗(σ).

Unfortunately, an explicit expression for (5.2) cannot always be found. Consider for example
the curve

r⃗(t) = (1+ cos t, sin t, 2 sin(t/2)) , |t|< 2π (5.4)

whose arc length, measured from t = 0, is

σ(t) =

∫ t

0

Æ

1+ cos2(t/2) d t. (5.5)

Thus, an explicit expression in the form of (5.2) is not available. For these cases, we will give
an alternative set of formulas for computing the Frenet apparatus.

Note the basic relations of differentiation for r⃗(t) and r⃗(σ) (or more precisely R⃗(σ)):‡

d r⃗(t)
d t

=
dσ
d t

d r⃗(σ)
dσ

= v
d r⃗(σ)

dσ
= v t̂ (5.6)

d2 r⃗(t)
d t2

=
d
d t

�

v t̂
�

=
dv
d t

t̂ + v
d t̂
d t

=
dv
d t

t̂ + v
dσ
d t

d t̂
dσ

=
dv
d t

t̂ +κv2n̂ (5.7)

‡In mechanics, d2 r⃗/d t2 in (5.7) is the acceleration of a moving point. It has two orthogonal components: one
along the tangential direction describing the change of speed, and the other along normal direction describing the
change of direction of motion. For a unit-speed curve, v ≡ 1 and the tangential acceleration is identically zero as
given in (4.3). Also, note that t̂ is the tangent vector and is not a vector in the direction of increasing t.
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Then straightforward manipulations lead to the following formulas for an arbitrary-speed curve
r⃗ = r⃗(t):

n̂(t) = b̂× t̂ (5.8)

b̂(t) =
r⃗ ′(t)× r⃗ ′′(t)
|r⃗ ′(t)× r⃗ ′′(t)|

(5.9)

t̂(t) =
r⃗ ′(t)
|r⃗ ′(t)|

(5.10)

κ(t) =
|r⃗ ′(t)× r⃗ ′′(t)|
|r⃗ ′(t)|3

(5.11)

τ(t) =
(r⃗ ′(t)× r⃗ ′′(t)) · r⃗ ′′′(t)
|r⃗ ′(t)× r⃗ ′′(t)|2

(5.12)

where

r⃗ ′(t) =
d r⃗(t)

d t
, r⃗ ′′(t) =

d2 r⃗(t)
d t2

, r⃗ ′′′(t) =
d3 r⃗(t)

d t3
(5.13)

The symbol | · | indicates the magnitude of a vector.
Let us consider the computation of the Frenet apparatus for an arbitrary-speed representa-

tion of a circular helix. This representation is obtained from (2.4) by letting t = t2,

r⃗(t) = (a cos t2, a sin t2, bt2).

Its first three derivatives are

r⃗ ′(t) = (−2at sin t2, 2at cos t2, 2bt)

r⃗ ′′(t) = (−2a(sin t2 + 2t2 cos t2), 2a(cos t2 − 2t2 sin t2), 2b)

r⃗ ′′′(t) = (4at(−3 cos t2 + 2t2 sin t2), 4at(−3sin t2 − 2t2 cos t2), 0).

Substitution of them into (5.8) through (5.12) leads to

n̂(t) = (− cos t2,− sin t2, 0)

b̂(t) =
�

b
c

sin t2,−
b
c

cos t2,
a
c

�

t̂(t) =
�

−
a
c

sin t2,
a
c

cos t2,
b
c

�

κ(t) =
a
c2

, τ(t) =
b
c2

.

Because σ = c t2, the above results are exactly the same as those given in (4.17) through (4.21).
Thus, the Frenet apparatus depends on the shape of the curve in space, not on its speed. In
other words, reparametrization does not affect the Frenet apparatus.
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6 Approximation of Unit-Speed Curves

A fundamental theorem of a unit-speed curve is stated below: Except for its position in space,
a unit-speed curve is uniquely determined by its curvature κ(σ) and torsion τ(σ). In other
words, for two curves r⃗ = r⃗1(σ) and r⃗ = r⃗2(σ) with κ1(σ) = κ2(σ) and τ1(σ) = ±τ2(σ) for
all σ, these two curves are the same except possibly for their positions in space. The proof
is simple. Concentrate on an arbitrary point σ = σ0 on a unit-speed curve r⃗ = r⃗(σ). In its
neighborhood, the curve can be represented by the Taylor series:

r⃗(σ) = r⃗(σ0) +
(σ−σ0)

1!
d r⃗
dσ

�

�

�

�

σ0

+
(σ−σ0)2

2!
d2 r⃗
dσ2

�

�

�

�

σ0

+
(σ−σ0)3

3!
d3 r⃗
dσ3

�

�

�

�

σ0

+ . . . (6.1)

Note that, in terms of a moving trihedron, all the derivatives of r⃗(σ) depend solely on κ(σ)
and τ(σ):

d r⃗
dσ
= t̂ (6.2)

d2 r⃗
dσ2

= κn̂ (6.3)

d3 r⃗
dσ3

=
dκ
dσ

n̂+κτb̂−κ2 t̂ (6.4)

......

Thus, the Taylor series for the curve r⃗ = r⃗(σ), namely,

r⃗(σ) = r⃗(σ0) + (σ−σ0) t̂ +
(σ−σ0)2

2
κn̂+

(σ−σ0)3

6

�

dκ
dσ

n̂+κτb̂−κ2 t̂
�

+ . . . (6.5)

is uniquely determined, except for its position in space, by κ(σ) and τ(σ).
In many applications, a few terms in the Taylor series in (6.5) may be used to represent

curve r⃗ = r⃗(σ) in a small neighborhood of σ = σ0. If only the first two terms of (6.5) are used,
we have a linear approximation (Figure 9a). If three terms are used, we have a parabolic
approximation (Figure 9b), which lies in the osculating plane, and is determined by the
curvature κ at σ = σ0. If four terms are used, we have

r⃗(σ)≈ r⃗(σ0) + (σ−σ0) t̂ +
(σ−σ0)2

2
κn̂+

(σ−σ0)3

6
κτb̂ (6.6)

which is known as the Frenet approximation (Figure 9c). The torsion, which appeared in the
last term of (6.6), controls the deviation from the osculating plane. The geometrical significance
of the sign of τ can now be stated: If τ > 0, the curve with increasing σ cuts through the
osculating plane in the direction of the binormal b̂, and if τ < 0, in the opposite direction. If
τ= 0, no conclusion can be drawn. In that case, we have to study the higher-order terms in
(6.5).
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(a) linear approximation

(b) parabolic approximation (c) Frenet approximation

Figure 9: Approximation of a curve near σ = σ0, assuming τ > 0.
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7 Representation of Surfaces

A curve may be considered as a locus of points traced out by the tip of a vector r⃗(t) when the
parameter t takes values in an open interval t1 < t < t2 (Figure 1). Analogously, a surface
is a locus of the tip of a vector r⃗(u, v) depending now on two parameters, when (u, v) vary
in a two-dimensional domain u1 < u < u2, v1 < v < v2, as graphically sketched in Figure 10.
Corresponding to (2.2) for a curve we have a representation of a surface

r⃗(u, v) = (x(u, v), y(u, v), z(u, v)); u1 < u< u2 and v1 < v < v2. (7.1)

We call (u, v) the curvilinear coordinates of a point r⃗ on the surface. By holding v constant
(v = v0), r⃗(u, v0) defines a curve on the surface, called a u-parameter curve; by holding u
constant (u = u0), r⃗(u0, v) defines a v-parameter curve (Figure 11). At (u0, v0), the tangent
(velocity) vectors along u- and v-parameter curves are denoted by r⃗u(u0, v0) and r⃗v(u0, v0),
respectively, where

r⃗u(u0, v0) =
�

∂ x
∂ u

,
∂ y
∂ u

,
∂ z
∂ u

�

u=u0,v=v0

(7.2)

r⃗v(u0, v0) =
�

∂ x
∂ v

,
∂ y
∂ v

,
∂ z
∂ v

�

u=u0,v=v0

(7.3)

Thus, the subscript u of r⃗u, for example, indicates the partial derivative of r⃗ with respect to u.

(a) (b)

Figure 10: Surface defined by the tip o f a vector in motion.

Figure 11: Veolcity vectors for u− and v− parameter curves.

Suppose that the inverse functions: u= u(x , y), v = v(x , y) can be found. Then we may
use (x , y) instead of (u, v) as the parameters of a surface. Thus, an alternative form for a
surface is

r⃗ = r⃗(x , y) = (x , y, f (x , y)) (7.4)
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or simply
z = f (x , y), or g(x , y, z) = 0. (7.5)

The two forms in (7.4) and (7.5) are often used in elementary calculus.
A familiar surface is a sphere which may be represented by

r⃗(u, v) = a(sin u cos v, sin u sin v, cos u).

Clearly, the parameters (u, v) can be identified with (θ ,φ) of the usual spherical coordinates.
The tangent vectors are

r⃗u(u, v) = a(cos u cos v, cos u sin v,− sinu)

r⃗v(u, v) = a(− sinu sin v, sinu cos v, 0)

with their cross product

r⃗u × r⃗v = a2 sin u (sinu cos v, sinu sin v, cosu) = (a sinu) r⃗(u, v) (7.6)

which is normal to the surface everywhere. If we express (u, v) in terms of (x , y), then an
alternative representation of the sphere is

r⃗ = (x , y,
Æ

a2 − (x2 + y2))

or
x2 + y2 + z2 = a2

which are in the forms of (7.4) and (7.5). Its tangent vectors are

r⃗x(x , y) =

�

1,0,
−x
p

a2 − (x2 + y2)

�

r⃗y(x , y) =

�

0,1,
−y
p

a2 − (x2 + y2)

�

with their cross product

r⃗x × r⃗y =

�

x
p

a2 − (x2 + y2)
,

y
p

a2 − (x2 + y2)
, 1

�

=
1

p

a2 − (x2 + y2)
r⃗(x , y) (7.7)

which is again normal to the surface.
An elementary problem in calculus is to determine the area of a surface. Referring to

Figure 10, we note that a differential rectangle (∆u×∆v) in (a) is mapped into a differential
parallelogram with sides ∆u r⃗u and ∆v r⃗v in (b). The area of this differential parallelogram is

|∆u r⃗u ×∆v r⃗v|= |r⃗u × r⃗v|∆u∆v.

Then the area over a region D is given by

Area=

∫∫

D
|r⃗u × r⃗v|du dv. (7.8)

For the example of the sphere discussed above, we have from (7.6)

Area=

∫∫

D
a2 sinu du dv (7.9)

20



Mathematics Notes

or, from (7.7),

Area=

∫∫

D

a
p

a2 − (x2 + y2)
d x d y. (7.10)

Both formulas of course lead to the same results.
Before concluding this section, we list below several frequently encountered surfaces.

(i) Elliptical cone (Figure 12).

r⃗ = (z tanθ1 cos v, z tanθ2 sin v, z) (7.11a)
�

x
tanθ1

�2

+
�

y
tanθ2

�2

= z2 (7.11b)

where θ1(θ2) is the half-cone angle in the plane y = 0 (x = 0).

Figure 12: Elliptical cone.

(ii) Elliptical paraboloid (Figure 13).

r⃗ = (au cos v, bu sin v, u2) (7.12a)

z =
� x

a

�2
+
� y

b

�2
(7.12b)

Figure 13: Elliptical paraboloid.
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(iii) Hyperbolic paraboloid (Figure 14).

r⃗ = (au cosh v, bu sinh v, u2) (7.13a)

z =
� x

a

�2
−
� y

b

�2
(7.13b)

Figure 14: Hyperbolic paraboloid.

(iv) Ellipsoid (Figure 15).

r⃗ = (a cos u cos v, b cosu sin v, c sin u) (7.14a)
� x

a

�2
+
� y

b

�2
+
�z

c

�2
= 1 (7.14b)

If a = b and a < c, the ellipsoid has a rotational symmetry about its major axis, and it is said to
be prolate. If a = b and a > c, the ellipsoid has a rotational symmetry about its minor axis,
and it is said to be oblate.

Figure 15: Ellipsoid.

(v) Hyperboloid of one sheet (Figure 16).

r⃗ = (a cosh u cos v, b coshu sin v, c sinh u) (7.15a)
� x

a

�2
+
� y

b

�2
−
�z

c

�2
= 1 (7.15b)

(vi) Hyperboloid of two sheets (Figure 17).

r⃗ = (a sinh u cos v, b sinhu sin v, c cosh u) (7.16a)
�z

c

�2
−
� x

a

�2
−
� y

b

�2
= 1 (7.16b)
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Figure 16: Hyperboloid of one sheet.

Figure 17: Hyperboloid of two sheets.

(vii) Surface of revolution (Figure 18). Consider a curve z = f (ρ) lying in the plane
y = 0. If this curve is rotated about the z-axis, it generates a surface of revolution, which may
be represented by

x = ρ cosφ, y = ρ sinφ, z = f (ρ). (7.17)

The curves ρ = constant are the parallels, and the curves φ = constant are the meridians of
the surface. A few examples are given below. For the special case θ1 = θ2, (7.17) describes a
cone of revolution (circular cone). If a = b in (7.12) through (7.16), all those surfaces become
rotationally symmetrical. In fact, they may be generated by revolving conics (Section 2) about
an axis.
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Figure 18: Surface of revolution.
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8 Tangent Plane, Normal and Curvature

When the parameters (u, v) vary independently over a two-dimensional domain, the tip of the
vector r⃗(u, v) generates a surface (Figure 10). However, if (u, v) are not independent but vary
according to a parameter t:

u= u(t), v = v(t), t1 < t < t2. (8.1)

Then the tip of the vector r⃗(u(t), v(t)) or simply r⃗(t) traces a curve on the surface. The tangent
vector of the curve is given by

d r⃗(t)
d t

= r⃗u
du
d t
+ r⃗v

dv
d t

(8.2)

where the vectors r⃗u and r⃗v were defined in (7.2) and (7.3). At any point P on the surface,
the independent vectors r⃗u and r⃗v define a plane, called the tangent plane at P to the surface.
The relation in (8.2) states that the tangents to all curves through P of the surface lie in the
tangent plane (Figure 19). The unit normal at P of the surface is defined by

N̂ = µ
r⃗u × r⃗v

|r⃗u × r⃗v|
, where µ= ±1 (8.3)

(Note that we use capital N̂ for the normal of a surface, and n̂ for that of a curve.) The choice of
the value of µ = ±1 in (8.3) is arbitrary and can be made to suit the convenience of a particular
problem. In application to EM diffraction problems, we always define the normal of a reflecting
surface or a wavefront pointing toward the source.

Figure 19: Tangent plane of a surface.

We will now study the bending of a surface by introducing a quantity of measurement
called normal curvature or simply curvature κ§. At a point P on a surface Σ, let us consider a
particular direction described by a unit tangent vector t̂. The plane determined by t̂ and the
normal N̂ cuts from Σ a planar curve C called the normal section of Σ in the direction of t̂
(Figure 20). If we give a unit-speed reparametrization to planar curve C , denoted by r⃗ = r⃗(σ),
then according to (4.2),

d2 r⃗
dσ2

= κc n̂c . (8.4)

§We use the same symbol κ for the curvature of a surface and that of a curve. There is little chance of confusion.
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The subscripts c of κc and n̂c signify their association with planar curve C . By definition, κc is
nonnegative. Since C lies in the plane spanned by N̂ and t̂, it is clear that N̂ = ±n̂c . Now, we
will define the curvature κ of surface Σ at point P in the direction t̂ to be

κ( t̂) = (n̂c · N̂)κc . (8.5)

Thus, |κ|= |κc|. The sign of κ( t̂) has the following significance: (i) If κ( t̂)> 0, then N̂ = +n̂c .
The normal section C bends toward N̂ at P (Figure 21a); (ii) If κ( t̂)< 0, then N̂ = −n̂c. The
normal section C bends away from N̂ at P (Figure 21b).

Figure 20: A normal section of surface Σ in the direction of t̂.

(a) κ > 0 (convergent wavefront) (b) κ < 0 (divergent wavefront)

Figure 21: Sign convention of the curvature of a normal section.

In application to EM diffraction problems, two types of surfaces are frequently encountered:
a wavefront and a reflecting surface of a scatterer. In either case, we choose N̂ pointing toward
the electromagnetic source. Because of this choice, the sign of κ has the following meaning:

(i) Let the surface be a wavefront. Since N̂ points toward the source which excites the
wave, N̂ is in the opposite direction of the wave propagation. If κ( t̂)> 0, the normal section C
of the surface in the direction of t̂ is divergent (Figure 21a), whereas if κ( t̂)< 0, the normal
section is convergent (Figure 21b).

(ii) Let the surface be a reflecting surface of a scatterer, and N̂ point toward the source
which illuminates the scatterer. If κ( t̂)> 0, the normal section is concave (Figure 21a), whereas
if κ( t̂)< 0, the normal section is convex (Figure 21b).

From (8.4) and (8.5), it is clear that curvature κ( t̂) has a dimension of (length)−1. We
define its reciprocal as the radius of curvature R( t̂) of surface Σ at point P in the direction of
t̂:

R( t̂) =
1
κ( t̂)

. (8.6)

(In EM diffraction problems, we often use the radius of curvature for a surface, and curvature
for a curve, in order to minimize confusion between κ and κc.) It is important to remember

26



Mathematics Notes

that at a given point P on the surface, κ( t̂) and R( t̂) are functions of tangent vector t̂. Their
variation with respect to t̂ will be discussed in detail in the next section.

We will now develop a formula for computing κ( t̂) for a given direction t̂. Differentiation
of t̂ · N̂ = 0 gives

d t̂
dσ
· N̂ = − t̂ ·

dN̂
dσ
= −

d r⃗
dσ
·

dN̂
dσ
= −

d r⃗ · dN̂
d r⃗ · d r⃗

.

Making use of this relation and (8.4) in (8.5), we have

κ( t̂) =
d2 r⃗
dσ2
· N̂ =

d t̂
dσ
· N̂ = −

d r⃗ · dN̂
d r⃗ · d r⃗

. (8.7)

The numerator and denominator of the right-hand side of (8.7) represent two important
quantities in the study of a surface. They are explained below:

The first fundamental form

I = d r⃗ · d r⃗ = (dσ)2 = (d x)2 + (d y)2 + (dz)2 (8.8)

represents the square of the differential arc length along a curve on a surface. In terms of the
parameters (u, v) we have

d r⃗ = r⃗udu+ r⃗vdv. (8.9)

Then an alternative form for I is

I = d r⃗ · d r⃗ = Edu2 + 2Fdudv + Gdv2 (8.10)

where du2 means (du)2, and

E = r⃗u · r⃗u, F = r⃗u · r⃗v , G = r⃗v · r⃗v . (8.11)

Despite the fact that E, F , and G depend on (u, v), the first fundamental form is invariant with
respect to change of parameters. This is obvious from the geometrical significance of arc length.

The second fundamental form

II = −d r⃗ · dN̂ , (8.12)

which will be shown later, is twice the deviation of the surface at (u+ du, v + dv) from the
tangent plane at (u, v) (Figure 22). For computational purposes we note

dN̂ = N̂udu+ N̂vdv. (8.13)

(Note that N̂ is a unit vector but N̂u is not). Then an alternative form of II is

II = −d r⃗ · dN̂ = edu2 + 2 f dudv + gdv2 (8.14)

where
e = −r⃗u · N̂u, 2 f = −(r⃗u · N̂v + r⃗v · N̂u), g = −r⃗v · N̂v . (8.15)

Since r⃗u · N̂ = 0 and r⃗v · N̂ = 0, more convenient formulas for e, f , and g are

e = r⃗uu · N̂ = µ
r⃗uu · (r⃗u × r⃗v)p

EG − F2
(8.16a)

f = r⃗uv · N̂ = µ
r⃗uv · (r⃗u × r⃗v)p

EG − F2
(8.16b)

g = r⃗vv · N̂ = µ
r⃗vv · (r⃗u × r⃗v)p

EG − F2
(8.16c)
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where we used the definition of N̂ in (8.3). The choice of µ (µ = +1 or −1) should agree
with that utilized in defining N̂ . Unlike the first fundamental form I , which is always positive,
the second fundamental form II may be either positive or negative. It may be shown that the
absolute value of II is also invariant with change of parameters (u, v). Its sign is preserved if
the parameter transformation has a positive Jacobian, otherwise, its sign is reversed.

Figure 22: Second fundamental form II is twice the deviation of the surface from its tangent
plane.

Return to the curvature in the direction t̂ of a surface given in (8.7). Now, it can be written
as

κ( t̂) =
II
I
=

edu2 + 2 f dudv + gdv2

Edu2 + 2Fdudv + Gdv2
(8.17)

where (E, F, G) are defined in (8.11) and (e, f , g) in (8.16). The ratio dv/du determines the
direction of t̂. Alternatively we may write the tangent vector t̂ as

t̂ = t1 r⃗u + t2 r⃗v . (8.18)

Then the formula in (8.17) for the curvature becomes

κ( t̂) =
et2

1 + 2 f t1 t2 + g t2
2

Et2
1 + 2F t1 t2 + Gt2

2

(8.19)

To illustrate the computation procedure of curvature, let us consider a cylinder with radius
a as an example (Figure 23)

r⃗(u, v) = (a cosu, a sin u, v).

In terms of the familiar cylindrical coordinates, it is obvious that u= φ and v = z. Straightfor-
ward differentiation gives

r⃗u = (−a sinu, a cos u, 0)

r⃗v = (0, 0,1)

r⃗uu = (−a cosu,−a sinu, 0)

r⃗uv = r⃗vv = 0.

Substitution of the above results in (8.11) and (8.16) gives

E = a2, F = 0, G = 1

e = −a, f = 0, g = 0.
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Then the normal is found from (8.3), taking µ= +1,

N̂ = (cosu, sinu, 0)

which points away from the axis of the cylinder (a convex cylinder). The two fundamental
forms are

I = a2du2 + dv2

II = −adu2

and the curvature is given by (8.17), or

κ( t̂) = −
1
a

1

1+ 1
a2

� dv
du

�2 .

Introducing the angle α such that (Figure 23)

tanα=
1
a

dv
du

,

we have

κ( t̂) = −
1
a

cos2α.

Along the direction α = 0, i.e., the direction of t̂, κ = −a−1, where the minus sign signifies the
fact that the surface bends away from the outward normal N̂ . The magnitude of the curvature
decreases continuously as α increases. At α= π/2 (z direction), κ= 0 which is the direction
of minimum bending of the surface.

Figure 23: Curvature of a cylinder.
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9 Principal Curvature

At a point P on a surface, curvature κ( t̂) of the surface as given in (8.17) is a function of
direction (or dv/du). A knowledge of κ( t̂) for all t̂ in the tangent plane determines the bending
of the surface in the neighborhood of P. In this section, we will study the following important
fact about κ( t̂): As t̂ revolves in the tangent plane, a pair of orthogonal directions exists for
which κ( t̂) assumes maximum and minimum values. These two directions are called principal
directions, represented by two unit vectors ê1 and ê2; the two extreme values of κ are called
principal curvatures denoted by κ1 and κ2. The curvature κ( t̂) along an arbitrary direction
can be actually expressed in terms of κ1 and κ2. Thus, there are only two degrees of freedom
in κ( t̂). From the simple example of the cylinder discussed at the end of the last section (Figure
23), it is obvious that (ê1, ê2) are in the directions of (φ̂, ẑ), and κ1 = −a−1,κ2 = 0.

Let us concentrate on the expression of κ( t̂) given in (8.19). To determine the extreme
values of κ( t̂) when t1 and t2 vary, we require

∂ κ

∂ t1
= 0,

∂ κ

∂ t2
= 0 (9.1)

which gives two homogeneous equations¶

(e− κE)t1 + ( f −κF)t2 = 0 (9.2)

( f − κF)t1 + (g −κG)t2 = 0 (9.3)

For nontrivial solutions, the determinant of the coefficient matrix must be zero:

det

�

�

�

�

e−κE f −κF
f −κF g −κG

�

�

�

�

= 0 (9.4)

Expanding the determinant, we have a quadratic equation for the extreme values of κ:

κ2 − 2κMκ+κG = 0 (9.5)

where the coefficients are:

Mean curvature: κM =
κ1 +κ2

2
=

Eg − 2 f F + eG
2(EG − F2)

(9.6a)

Gaussian curvature: κG = κ1κ2 =
eg − f 2

EG − F2
(9.6b)

It can be shown that the quadratic equation in (9.5) has two real roots, which are the principal
curvatures κ1 and κ2:

κ1,2 = κM ±
q

κ2
M −κG (9.6c)

Substituting κ1 and κ2 into (9.2) or (9.3), we obtain solutions for (t1, t2), which determine
the principal directions according to (8.18). More explicitly, the two (unit) principal directions

¶The formula of Rodrigues for lines of curvature reads

κ(r⃗udu+ r⃗v dv) + (N̂udu+ N̂v dv) = 0

which is the vector version of (9.2) and (9.3). It is a necessary and sufficient condition for dv/du to be the principal
direction.
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(ê1, ê2) are given by

ê1 =
1
γ1
[1r⃗u +αr⃗v] (9.7a)

ê2 =
1
γ2
[β r⃗u + 1r⃗v] (9.7b)

where

α=
e−κ1E
κ1F − f

=
f −κ1F
κ1G − g

(9.7c)

β =
f −κ2F
κ2E − e

=
g −κ2G
κ2F − f

(9.7d)

γ1 = (E + 2αF +α2G)1/2 (9.7e)

γ2 = (β
2E + 2βF + G)1/2 (9.7f)

If κ1 ̸= κ2, ê1 and ê2 are orthogonal, which follows from the fact that

ê1 · ê2 =
1
γ1γ2

[βE + (α+ β)F +αG] = 0

If κ1 = κ2, the curvature at P is constant in all directions, and P is called umbilic.
Except for umbilics, at every point on a surface there are two mutually orthogonal principal

directions ê1 and ê2. Curves on the surface that at all points are tangent to a principal direction
are called lines of curvature. Many results can be greatly simplified if the lines of curvature
are used for the u- and v-parameter curves.

Referring to Figure 24, when u- and v-parameter curves are themselves lines of curvature,
we have

r⃗u

|r⃗u|
= ê1,

r⃗v

|r⃗v|
= ê2 (9.8)

It can be shown from (9.7) that a necessary and sufficient condition for (9.8) is

F = 0, f = 0 (9.9)

Figure 24: Lines of curvature are used as u- and v-parameter curves.

For an arbitrary tangent vector t̂ at P, the representation in (8.18) now becomes

t̂ = cosα ê1 + sinα ê2 (9.10)
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where α is the angle of t̂ measured from ê1 in the tangent plane (Figure 24). Using (9.9) and
(9.10) in (8.19), we have

κ( t̂) =
e
E

cos2α+
g
G

sin2α (9.11)

By simple differentiation of (9.11) with respect to α, we determine the two extreme values of
κ:

κ1 =
e
E

, if α= 0 (9.12a)

κ2 =
g
G

, if α= π/2 (9.12b)

which by definition are the principal curvatures. Substituting (9.12) into (9.11) gives

κ( t̂) = κ1 cos2α+κ2 sin2α (9.13)

Thus, the curvature along an arbitrary direction defined in (9.10) is simply related to the two
principal curvatures.

Ellipsoid. We will give an example for the calculation of curvatures. Consider an ellipsoid
(Figure 15)

x2

a2
+

y2

b2
+

z2

c2
= 1 (9.14a)

which may be represented by the following parametric equation:

r⃗(u, v) = (a sinu cos v, b sin u sin v, c cosu) (9.14b)

Straightforward differentiation gives

r⃗u = (a cosu cos v, b cos u sin v,−c sinu) (9.15a)

r⃗v = (−a sinu sin v, b sin u cos v, 0) (9.15b)

r⃗uu = (−a sinu cos v,−b sinu sin v,−c cos u) (9.15c)

r⃗uv = (−a cosu sin v, b cos u cos v, 0) (9.15d)

r⃗vv = (−a sinu cos v,−b sinu sin v, 0) (9.15e)

Substituting the above into (8.11) and (8.16) leads to

E = cos2 u(a2 cos2 v + b2 sin2 v) + c2 sin2 u (9.16a)

F = (b2 − a2) sin u cosu sin v cos v (9.16b)

G = sin2 u(a2 sin2 v + b2 cos2 v) (9.16c)

e =
−abc

[c2 sin2 u(a2 sin2 v + b2 cos2 v) + a2 b2 cos2 u]1/2
(9.16d)

f = 0 (9.16e)

g = e sin2 u (9.16f)

The surface normal is found by (8.3), choosing µ= +1,

N̂ =
( sin u cos v

a , sinu sin v
b , cosu

c )

[( sin u cos v
a )2 + ( sinu sin v

b )2 + ( cosu
c )2]1/2

Alternatively it may be written in terms of (x , y, z)

N̂ =
( x

a2 , y
b2 , z

c2 )
q

( x
a2 )2 + (

y
b2 )2 + (

z
c2 )2
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From (9.6a) the mean curvature is found to be

κM =
abc[a2 sin2 u cos2 v + b2 sin2 u sin2 v + c2 cos2 u− (a2 + b2 + c2)]

2[c2 sin2 u(a2 sin2 v + b2 cos2 v) + a2 b2 cos2 u]3/2
(9.17)

which becomes, in terms of (x , y, z),

κM =
(x2 + y2 + z2)− (a2 + b2 + c2)

2(abc)2( x2

a4 +
y2

b4 +
z2

c4 )3/2

The Gaussian curvature is determined from (9.6b) with the result

κG =
(abc)2

[c2 sin2 u(a2 sin2 v + b2 cos2 v) + a2 b2 cos2 u]2
=

1

(abc)2( x2

a4 +
y2

b4 +
z2

c4 )2
(9.18)

The principal curvatures can be found from the quadratic equation in (9.5), or

κ1,κ2 = κM ±
q

κ2
M −κG (9.19)

At points where κ2
M = κG, we have identical curvature in all directions on the tangent plane.

They are umbilics. For an ellipsoid with unequal axes, there are four umbilics. Assuming
a > b > c, the coordinates of the umbilics are

x = ±a

√

√a2 − b2

a2 − c2
, y = 0, z = ±c

√

√ b2 − c2

a2 − c2
(9.20)

For the special case a = b = c, the ellipsoid reduces to a sphere of radius a. Then κ1 = κ2 =
(−1/a) and all points on a sphere are umbilics.

As a numerical example, let us set

a = 2, b =
p

2, c = 1 (9.21)

The four umbilics are located at

x = ±2

√

√2
3

, y = 0, z = ±

√

√2
3

one of which is approximately indicated in Figure 25. At a point P where u = v = π/4 and has
coordinates

x = 1, y =
1
p

2
, z =

1
p

2

we have the following numerical values

r⃗u = (1,
1
p

2
,−

1
p

2
) (9.22)

r⃗v = (−1,
1
p

2
, 0) (9.23a)

E = 2, F = −
1
2

, G =
3
2

(9.23b)

e =
−4
p

11
, f = 0, g = −

2
p

11
(9.24a)
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κM =
−20

11
p

11
, κG =

32
121

(9.25a)

κ1,2 =
−4

11
p

11
(5∓
p

3) (9.25b)

The two principal directions calculated from (9.7) are

ê1 =
1
p

9+ 4
p

3
(2+
p

3,−

√

√3
2

,−
1
p

2
) (9.26a)

ê2 =
1
p

16+ 6
p

3
(−3−

p
3,

1−
p

3
p

2
,
1+
p

3
p

2
) (9.26b)

which are obtained with the help of intermediate values

α= −(1+
p

3), β =
1
2
(1+
p

3) (9.27a)

γ1 =
Æ

9+ 4
p

3, γ2 =
1
2

Æ

16+ 6
p

3 (9.27b)

Figure 25: A sketch of the ellipsoid with a = 2, b =
p

2, c = 1. U is an umbilic. The lines are
lines of curvature.

Caustic. As a last subject on principal curvatures, let us establish a fact that finds frequent
use in EM diffraction problems. Consider a point P specified by parameters (u, v) on a surface
W (in diffraction problems, W is recognized as a wavefront). Referring to an origin O, we may
also specify P by a position vector r⃗(u, v) (Figure 26). The surface normal at P is given by the
equation

R⃗(u, v,σ) = r⃗(u, v)−σN̂(u, v) (9.28)

Here R⃗ is the position vector of a typical point on the surface normal. N̂ is the unit surface
normal vector (pointing toward the source of the wavefront). σ is the arc length measured
positively in the direction of (−N̂), and σ = 0 at P. A question of interest is, under what
condition does the normal at an adjacent point P ′ specified by parameters (u+ du, v + dv) on
the surface intersect with that at P? The answer is that, to the first-order approximation,
normals drawn from adjacent points on a line of curvature intersect. This will be shown
below. The distance between the normal at P and that at P ′ is the magnitude of the vector

R⃗(u+ du, v + dv,σ+ dσ)− R⃗(u, v,σ)

= (R⃗udu+ R⃗vdv + R⃗σdσ) + higher-order terms

34



Mathematics Notes

If the two normals intersect to the first order, we require

D⃗ = R⃗udu+ R⃗vdv + R⃗σdσ (9.29)

to be zero. The substitution of (9.28) into (9.29) leads to

D⃗ = (r⃗udu+ r⃗vdv)− N̂ dσ−σ(N̂udu+ N̂vdv) (9.30)

If P and P ′ are both located on the same line of curvature, we may use the formula of Rodrigues
(see footnotes in association with (9.2) and (9.3)):

κ(r⃗udu+ r⃗vdv) + (N̂udu+ N̂vdv) = 0 (9.31)

Then (9.30) becomes
D⃗ = −(1+σκ)(r⃗udu+ r⃗vdv)− N̂ dσ

Clearly D⃗ is zero if

σ = −
1
κ
(a constant)

and hence dσ = 0. In summary, to the first order, the normal at P and the normal at an adjacent
point P ′ on the same line of curvature intersect at

R⃗= r⃗(u, v) +
1
κ

N̂ (9.32)

Recall the sign convention of κ discussed in Section 8. If the normal section of W along PP ′

bends toward (away from) N̂ , κ is positive (negative). Therefore, regardless of the choice of N̂ ,
the intersection point R⃗ in (9.32) always lies on the concave side of the normal section of W .

Figure 26: Intersection of normals drawn from adjacent points on a line of curvature.

In optics, point R⃗ in (9.32) is called a focus. Since, in general, there are two distinct
principal curvatures κ = κ1 and κ = κ2, there are two foci on each normal (ray). As (u, v)
varies on the given surface (wavefront), (9.32) describes two surfaces (one for κ = κ1 and one
for κ= κ2), which are known as caustics (or focal surfaces). The condition that D⃗ defined
in (9.29) is zero implies that R⃗u, R⃗v , R⃗σ are coplanar. Thus the normal N̂(u, v) is tangent to
caustics at their foci. Two caustics F1 and F2 of a surface W are sketched in Figure 27. (ê1, ê2)
are principal directions, and N̂ , the normal. In this sketch, κ1 is negative (the normal section
bends away from N̂), whereas κ2 is positive.
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Figure 27: Two caustics F1 and F2 of a surface W . (ê1, ê2) are principal directions. In this
sketch, κ1 is negative and κ2 is positive.
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10 Curvature Matrix

At a point P on a curve, the knowledge of curvature and torsion at P determines the local
properties to the second degree of the curve in the neighborhood of P, as described in (6.6). At
a point P on a surface, a similar role is played by a linear operator S, called shape operator,
defined on the tangent plane at P. In our application to EM diffraction problems, it is convenient
to represent S by a 2× 2 matrix ¯̄Q. We call ¯̄Q the curvature matrix. The explicit form of ¯̄Q, of
course, depends on the base vectors on the tangent plane. If the base vectors coincide with the
principal directions of the surface, ¯̄Q is a diagonal matrix. Otherwise, ¯̄Q is not a diagonal matrix
but can be related to the diagonalized one by a standard theory of linear transformation.

Instead of starting with the shape operator S, we will introduce ¯̄Q directly as below. On a
surface Σ, there is a normal N̂ at each point. As N̂ moves away from a point in an arbitrary
direction, its variation follows the bending of Σ in that direction. Take the cylindrical surface
in Figure 23 as an example, along the direction of r⃗v (z-direction), N̂ is a constant, indicating
the fact that Σ does not bend in this direction. Along the direction of r⃗u (φ-direction), the
differential variation of N̂ is also in the direction of r⃗u and has a constant magnitude. This
reflects the roundness of Σ in the direction of r⃗u. Following this idea, we may introduce a
quantity measuring the variation of N̂ at each point on Σ. Since N̂ · N̂ = 1, differentiations
with respect to u and v give

N̂u · N̂ = 0, N̂v · N̂ = 0 (10.1)

which means that (N̂u, N̂v) at a point P lie in the tangent plane of Σ at P. Hence we may express
(N̂u, N̂v) in terms of tangent vectors (r⃗u, r⃗v) as follows:

−N̂u =Q11 r⃗u +Q12 r⃗v (10.2a)

−N̂v =Q21 r⃗u +Q22 r⃗v (10.2b)

The four parameters in (10.2) form a curvature matrix ¯̄Q

¯̄Q =

�

Q11 Q12

Q21 Q22

�

(10.3)

In matrix notations, (10.2) may be rewritten as

[−N̂u − N̂v]
T = ¯̄Q[r⃗u r⃗v]

T (10.4)

Here T is the transpose operator. [r⃗u r⃗v] is a 3× 2 matrix and is explicitly given by

[r⃗u r⃗v] =





∂ x
∂ u

∂ x
∂ v

∂ y
∂ u

∂ y
∂ v

∂ z
∂ u

∂ z
∂ v



 (10.5)

Similarly, [N̂u N̂v] is given by

[N̂u N̂v] =







∂ N̂x
∂ u

∂ N̂x
∂ v

∂ N̂y

∂ u
∂ N̂y

∂ v
∂ N̂z
∂ u

∂ N̂z
∂ v






(10.6)

We regard (10.4) as the definition of ¯̄Q.
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For a given surface, it is desirable to develop a formula for calculating ¯̄Q directly. To this
end, let us introduce the first fundamental matrix ¯̄I such that

¯̄I =

�

E F
F G

�

=

�

r⃗u · r⃗u r⃗u · r⃗v

r⃗v · r⃗u r⃗v · r⃗v

�

= [r⃗u r⃗v]
T [r⃗u r⃗v] (10.7)

and the second fundamental matrix ¯̄II such that

¯̄II =

�

e f
f g

�

= −
�

N̂u · r⃗u N̂u · r⃗v

N̂v · r⃗u N̂v · r⃗v

�

= [−N̂u − N̂v]
T [r⃗u r⃗v] (10.8)

Now multiply both sides of (10.4) by [r⃗u r⃗v]T , which yields

¯̄II = ¯̄Q¯̄I (10.9)

Since (u, v) are independent parameters, ¯̄I in (10.7) is nonsingular. Inversion of ¯̄I in (10.9)
gives

¯̄Q = ¯̄II(¯̄I)−1 (10.10a)

or more explicitly

Q11 =
eG − f F
EG − F2

Q12 =
f E − eF
EG − F2

(10.10b)

Q21 =
f G − gF
EG − F2

Q22 =
gE − f F
EG − F2

(10.10c)

The results in (10.2) and (10.10) are known as Weingarten equations. They enable us to
calculate ¯̄Q directly for a given surface.

Once ¯̄Q is found at a point P on a surface, we may calculate from it the principal curvatures
and directions at P. This will be demonstrated next. From (10.10) and the definitions in (9.6),
it is readily shown that

1
2
· trace ¯̄Q =

1
2
(κ1 +κ2) =mean curvature κM (10.11a)

det ¯̄Q = κ1κ2 = Gaussian curvature κG (10.11b)

Therefore, κ1 and κ2 are the two eigenvalues of ¯̄Q. Following a standard procedure, let us
diagonalize ¯̄Q. The two eigenvectors of ¯̄Q are denoted by

d⃗1 =

�

d11

d21

�

, d⃗2 =

�

d12

d22

�

(10.12)

which satisfy the relations
¯̄Qd⃗n = κnd⃗n, n= 1,2 (10.13)

Explicitly the solutions of (10.13) are given by

d21

d11
=
κ1 −Q11

Q12
=

Q21

κ1 −Q22
(10.14a)

d12

d22
=
κ2 −Q22

Q21
=

Q12

κ2 −Q11
(10.14b)

which determine d⃗n within a normalization constant. Let us form a 2× 2 matrix ¯̄D such that

¯̄D = [d⃗1 d⃗2] =

�

d11 d12

d21 d22

�

(10.15)
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Then the matrix
¯̄D−1 ¯̄Q ¯̄D =

�

κ1 0
0 κ2

�

(10.16)

is the diagonalized curvature matrix. The first and second rows of the 2× 3 matrix

¯̄D−1[r⃗u r⃗v]
T (10.17)

give the principal directions. After normalization, the unit principal directions in (10.17) are
explicitly given by

ê1 =
1
γ1
(1r⃗u +αr⃗v) (10.18a)

ê2 =
1
γ2
(β r⃗u + 1r⃗v) (10.18b)

where

α=
d12

d22
=

Q22 −κ2

Q21
=

Q12

Q11 −κ2
(10.18c)

β =
d21

d11
=

Q11 −κ1

Q12
=

Q21

Q22 −κ1
(10.18d)

γ1 = (E + 2αF +α2G)1/2 (10.18e)

γ2 = (β
2E + 2βF + G)1/2 (10.18f)

By straightforward manipulation, it can be shown that (10.18) is identical to (9.7). In summary,
curvature matrix ¯̄Q is defined in (10.2) and (10.3). It can be calculated from (10.10). Once
¯̄Q is known, the principal curvatures and direction are determined by (10.11) and (10.18),
respectively.

The four vectors r⃗u, r⃗v , ê1 and ê2 lie in the tangent plane at P of a surface (Figure 19). In
general, r⃗u and r⃗v are not normalized, nor mutually orthogonal, and not in principal directions,
as shown in Figure 28a.

Now, let us consider the special case in Figure 28b, where

(i) |r⃗u|= |r⃗v|= 1 (10.19a)

(ii) r⃗u · r⃗v = 0 (10.19b)

(iii) the angle measured counterclockwise from r⃗u to ê1 is ψ (10.19c)

Then from the relations
E = 1, F = 0, G = 1, (10.20)

the following facts may be established:

(a) Apart from a constant, ¯̄D in (10.15) is a unitary matrix given by

¯̄D =

�

cosψ − sinψ
sinψ cosψ

�

= ( ¯̄D−1)T (10.21)

(b) The curvature matrix ¯̄Q is symmetrical and is given by

¯̄Q =

�

e f
f g

�

= ¯̄D

�

κ1 0
0 κ2

�

¯̄DT

=

�

κ1 cos2ψ+κ2 sin2ψ (κ1 −κ2) sinψ cosψ
(κ1 −κ2) sinψ cosψ κ1 sin2ψ+κ2 cos2ψ

�

(10.22)

39



Mathematics Notes

If ψ= 0, ¯̄Q is further simplified to become a diagonal matrix

¯̄Q =

�

κ1 0
0 κ2

�

, if ψ= 0 (10.23)

As discussed in (9.9), a necessary and sufficient condition for ψ= 0 is F = 0 and f = 0.
We conclude this section with an example. Let us calculate the curvature matrix at a point

P with coordinates

x = 1, y =
1
p

2
, z =

1
p

2
(10.24)

located on an ellipsoid (Figure 25)

� x
2

�2
+
�

y
p

2

�2

+ z2 = 1 (10.25)

This example was studied in Section 9. Substituting (9.24) into (10.10) gives immediately

¯̄Q =
−4

11
p

11

�

6 2
1 4

�

(10.26)

We note that ¯̄Q is not diagonal because (r⃗u, r⃗v) in (9.23) are not in the same directions as
(ê1, ê2) in (9.26); nor is it symmetrical because r⃗u and r⃗v are not orthogonal. From the given ¯̄Q
in (10.26), we can calculate principal curvatures from (10.11) and principal directions from
(10.18). These results are of course identical to those given in (9.25) and (9.26).

(a) (b)

Figure 28: Four vectors in the tangent plane at P of a surface. (ê1, ê2) are principal directions.

40



Mathematics Notes

11 Approximation of a Surface

In EM diffraction problems, there are typically two types of surface involved: (i) a perfectly
conducting surface Σ where an electromagnetic field is reflected or diffracted, and (ii) a
wavefront W of a ray pencil. We are often interested in the local geometrical properties of Σ
or W at a point O. For this purpose instead of using the exact representation of the surface, a
quadratic approximation based on the Taylor expansion is sufficient. This approximation is
discussed in the present section.

At point O, let us introduce a set of right-handed orthonormal base vectors (σ̂1, σ̂2, σ̂ = σ̂3).
In the case of a conducting surface Σ, we choose

σ̂ = +N̂ , for Σ (11.1a)

In the case of a wavefront W , we choose (Figure 29b)

σ̂ = −N̂ , for W (11.1b)

Thus, the normal N̂ always points toward the source (of the incident field in the case of Σ, or of
the ray pencil in the case of W ), whereas σ̂ points toward the incident field, or the direction of
propagation of the ray pencil. The two orthogonal directions (σ̂1, σ̂2) lie in the tangent plane
of the surface. They may or may not coincide with the principal directions. In the remainder of
this section, we will concentrate on the case in (11.1a). Results so obtained apply also to the
case in (11.1b) after obvious modifications (See (13) in Section 13).

(a) (b)

Figure 29: Choice of normal N̂ in an electromagnetic diffraction problem. Note that N̂ always
points toward the electromagnetic source.

Consider a point P on Σ in the neighborhood of O (Figure 30). The position vector r⃗ of P
in reference to O is

r⃗ = σ̂1σ1 + σ̂2σ2 + σ̂σ (11.2)

where (σ1,σ2,σ) are the rectangular coordinates of P. Since P is on Σ, there are only two
degrees of freedom in (σ1,σ2,σ). Let (σ1,σ2) be the independent parameters, and play the
roles of (u, v). Then the relation

σ = σ(σ1,σ2) (11.3)

describes Σ. To obtain an approximate version of (11.3) valid for small |σ1| and |σ2|, let us
replace (11.2) by its Taylor expansion around O, namely

r⃗(σ1,σ2) = r⃗σ1
σ1 + r⃗σ2

σ2 +
1
2
(r⃗σ1σ1

σ2
1 + 2r⃗σ1σ2

σ1σ2 + r⃗σ2σ2
σ2

2) +O(σ3
1,2) (11.4)
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where r⃗σ1
, for example, is the partial derivative of r⃗ with respect to σ1 evaluated at (σ1 =

0,σ2 = 0). In (11.4), O(σ1,σ3
2) means terms of order σn

1σ
m
2 with m+ n= 3, which indicates

that terms higher than quadratics of σ1 and σ2 have been neglected. From (11.4), σ is found
to be

σ = r⃗ · σ̂ =
1
2
(eσ2

1 + 2 f σ1σ2 + gσ2
2) +O(σ3

1,2) (11.5)

where e, f , and g were defined in (8.16) (recalling u→ σ1, v→ σ2 and N̂ = σ̂). Note that at
O we have

r⃗σ1
=

∂

∂ σ1
(σ̂1σ1 + σ̂2σ2 + σ̂σ)

�

�

�

σ1=0,σ2=0
= σ̂1 + σ̂(eσ1 + f σ2)

�

�

�

σ1=0,σ2=0
= σ̂1

and similarly r⃗σ2
= σ̂2. When these results are used in (8.10), we have

E = 1, F = 0, G = 1. (11.6)

With the help of (10.10) and (11.6), we may rewrite (11.5) in terms of the curvature matrix ¯̄Q,
namely

σ =
1
2

�

Q11σ
2
1 + (Q12 +Q21)σ1σ2 +Q22σ

2
2

�

+O(σ3
1,2) (11.7)

or, in matrix notation

σ =
1
2

�

σ1

σ2

�

· ¯̄Q
�

σ1

σ2

�

+O(σ3
1,2) (11.8)

This is the desired quadratic approximation of a surface valid for small |σ1| and |σ2|.

Figure 30: Quadratic approximation of a surface.

When (σ̂1, σ̂2) coincide with the principal directions (ê1, ê2), ¯̄Q is given in (10.23), and
(11.8) becomes

σ =
1
2
(κ1σ

2
1 +κ2σ

2
2) +O(σ3

1,2) (11.9)

This simple representation in (11.9) brings out clearly the geometrical significance of the sign
of Gaussian curvature κG = κ1κ2, as discussed below : (i) If κG > 0, κ1 and κ2 have the same
sign. The quadratic approximation in (11.9) describes a paraboloid (Figure 31a). (ii) If κG < 0,
κ1 and κ2 have different signs. The quadratic approximation describes a hyperboloid (Figure
31b). (iii) If κG = 0 with κ1 ̸= 0 and κ2 = 0, the quadratic approximation describes a cylinder
(Figure 31c). (iv) If κG = 0 with κ1 = κ2 = 0, the quadratic approximation reduces to a plane.
At most, the original surface can have small bending at (σ1 = 0,σ2 = 0). To study this small
bending, we have to examine the higher-order terms in the Taylor expansion. We emphasize
that the Gaussian curvature, which equals det ¯̄Q, is an invariant geometrical quantity of a

42



Mathematics Notes

surface. Its value (and its sign) is independent of the choice of a particular coordinate system
which describes the surface.

When (σ̂1, σ̂2) make an angle ψ with the principal directions (ê1, ê2) (cf. Figure 28b), ¯̄Q is
given in (10.22). It should be added that although (11.8) was derived based on the assumption
of orthonormal (σ̂1, σ̂2), it is valid for any two independent vectors (σ̂1, σ̂2) in the tangent
plane of the surface. For example, coordinates (σ1,σ2) may refer to the base vectors (r⃗u, r⃗v)
in Figure 28a, and (11.8) remains valid. In the latter case, ¯̄Q is no longer symmetrical, and is
given by the general form in (10.10).

(a) κG > 0 with κ1 < 0 and κ2 < 0

(b) κG < 0 with κ1 < 0 and κ2 > 0

(c) κG = 0 with κ1 > 0 and κ2 = 0

Figure 31: Sign of Gaussian curvature κG = κ1κ2. In this sketch, σ̂ = +N̂ is used.

43



Mathematics Notes

12 Geodesics

For two given points P and Q on a surface Σ, what is the shortest arc joining them? If Σ is
a plane, the answer is obvious: The shortest arc is the straight line segment joining P and
Q. For a general surface, the shortest arc, if it exists, must be a geodesic. A straight line is
characterized by the property that its curvature is zero, whereas geodesics are curves of zero
geodesic curvature.

Let us first define geodesic curvature. Consider a curve C (not necessarily a geodesic) on Σ
(Figure 32). The normal and tangent of C at a point P are denoted by n̂ and t̂, respectively.
The curvature vector κn̂ of C lies in a plane perpendicular to t̂, and can be resolved into two
components

κn̂= κnN̂ +κg û (12.1)

where N̂ is the normal to Σ at P (pointing to any one of the two possible directions), and
û= N̂ × t̂. We called κg in (12.1) the geodesic curvature of curve C at point P. From Figure
32, we note that, with a possible minus sign, κg is the curvature of curve C ′, which is the
orthogonal projection of C on the tangent plane. As an example, consider the small circle C on
a sphere of radius a (Figure 33). At any point on C , its geodesic curvature is

κg = κn̂ · û=
1
a

cosθ (12.2)

which varies between +a−1 and −a−1, and vanishes when C is a great circle (θ = π/2).

Figure 32: A curve C on a surface and its projection C ′ on the tangent plane.

In calculating κg , the following quantities, called Christoffel symbols, are needed:

Γ 1
11 =

GEu − 2F Fu + F Ev

2(EG − F2)
, Γ 2

11 =
2EFu − EEv − F Eu

2(EG − F2)
(12.3a)

Γ 1
12 =

GEv − FGu

2(EG − F2)
, Γ 2

12 =
EGu − F Ev

2(EG − F2)
(12.3b)

Γ 1
22 =

2GFv − GGu − FGv

2(EG − F2)
, Γ 2

22 =
EGv − 2F Fv + FGu

2(EG − F2)
(12.3c)
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Figure 33: A small circle and its normal n̂ on a sphere.

where the subscripts as usual indicate partial derivatives.

Eu = 2r⃗u · r⃗uu Ev = 2r⃗u · r⃗uv (12.4a)

Fu = r⃗u · r⃗uv + r⃗v · r⃗uu Fv = r⃗u · r⃗vv + r⃗v · r⃗uv (12.4b)

Gu = 2r⃗v · r⃗uv Gv = 2r⃗v · r⃗vv (12.4c)

Note that Christoffel symbols depend only on the coefficients of the first fundamental form and
their derivatives (not on e, f , g etc.). An explicit formula for κg in terms of Christoffel symbols
can be found in standard differential geometry textbooks (See P. 128 of D. J. Struik).

The definition of geodesics is that they are curves of vanishing geodesic curvature

κg = 0 (12.5)

From the condition in (12.5), two differential equations of the geodesic can be derived, namely

d2u
dσ2

+ Γ 1
11

�

du
dσ

�2

+ 2Γ 1
12

du
dσ

dv
dσ
+ Γ 1

22

�

dv
dσ

�2

= 0 (12.6a)

d2v
dσ2

+ Γ 2
11

�

du
dσ

�2

+ 2Γ 2
12

du
dσ

dv
dσ
+ Γ 2

22

�

dv
dσ

�2

= 0 (12.6b)

where σ is the arc length of a curve (geodesic). A solution of (12.6) is of the form

¨

u= f1(σ)

v = f2(σ)

which describes a geodesic. It should be remarked that (12.6a) and (12.6b) are not independent.
They are related through the first fundamental form in (8.10) or

dσ2 = Edu2 + 2Fdudv + Gdv2 (12.7)

Eliminating dσ from (12.6), we obtain a single differential equation of the geodesic, namely

d2v
du2

= Γ 1
22

�

dv
du

�3

+ 2(Γ 1
12 − Γ

2
22)
�

dv
du

�2

+ (Γ 1
11 − 2Γ 2

12)
dv
du
− Γ 2

11 (12.8)

which has the following interpretation: At a given point (u, v) on a surface, once dv/du is
given, d2v/du2 is determined, that is, the way in which the geodesic curve is continued. We
list below several properties of geodesics:
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(a) When κg = 0, we have from (12.1) that

n̂= ±N̂ (12.9)

Thus, the normal of a geodesic is in the same (or opposite) direction of the surface
normal.

(b) At a given point (initial point) on a surface, a geodesic is uniquely determined once a
tangential direction is specified. This follows from (12.8) and an existence theorem of
differential equations.

(c) For two given points P and Q on a surface, the minimum arc joining them, if it exists,
must be a geodesic. The converse, however, is not true. For example, great circles of a
sphere are geodesics. A great circle passing through P and Q has two arcs. In general,
these two arcs are not equal and only one of them gives the shortest distance.

We conclude the section with several examples for determining geodesics.

(i) Plane. A point on the x y-plane may be described by

r⃗(x , y) = (x , y, z = constant)

With u = x and v = y, it may be shown that all Christoffel symbols in (12.3) vanish. Then
(12.8) becomes

d2 y
d x2

= 0

Its solution is
y = ax + b

which is a straight line. Alternatively, the same problem may be solved by using cylindrical
coordinates with

r⃗(ρ,φ) = (ρ cosφ,ρ sinφ, z = constant)

With u= ρ and v = φ, Christoffel symbols in (12.3) are all zeros except

Γ 1
22 = −ρ, Γ 2

12 =
1
ρ

Then (12.6) and (12.7) become

d2ρ

dσ2
−ρ
�

dφ
dσ

�2

= 0 (12.10)

d2φ

dσ2
+

2
ρ

dρ
dσ

dφ
dσ
= 0 (12.11)

dσ2 = dρ2 +ρ2dφ2 (12.12a)

As remarked earlier, not all the above three equations are independent. For example, let us
write (12.12a) as

1=
�

dρ
dσ

�2

+ρ2
�

dφ
dσ

�2

(12.12b)

Taking the derivative of both sides of (12.12b) with respect to σ gives

0=
�

dρ
dσ

�

�

d2ρ

dσ2
−ρ
�

dφ
dσ

�2�

+ρ
�

dφ
dσ

�

�

ρ
d2φ

dσ2
+ 2

dρ
dσ

dφ
dσ

�
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which is a proper combination of (12.10) and (12.11). Hence, we may concentrate on the
solution of (12.11) and (12.12). Rewrite (12.11) as

(d2φ/dσ2)
(dφ/dσ)

+
2
ρ

dρ
dσ
= 0 (12.13a)

or
d

dσ

�

ln
�

ρ2 dφ
dσ

��

= 0 (12.13b)

whose solution is

dσ =
1
c
ρ2dφ, where c = constant (12.14)

Substituting (12.14) into (12.12a), we have

cdρ

ρ
p

ρ2 − c2
= dφ (12.15)

Integrating both sides of (12.15) leads to the solution

ρ = c sec(φ −φ0) (12.16)

where φ0 is another constant. As expected, (12.16) is also a straight line.

(ii) Cylinder and developable surfaces. Consider the helix curve on the surface of a
cylinder shown in Figure 8. At every point the normal n̂ of the helix is equal to ±N̂ of the
cylinder. Therefore, by (12.9), a helix is a geodesic on a cylinder. For any two given points P
and Q on a cylinder (Figure 34a), there are infinitely many helix curves (geodesics) joining
them. This point may be best explained by using a "developed" cylinder. A developable
surface is the one which ‖

(a) may be generated by a continuous motion of a straight line (the straight lines on the
surface are called generators), and

(b) has the same tangent plane at all points on any given generator.

Examples of developable surfaces are cylinders and cones. If one cuts the cylinder along a
generator (φ = 0 in Figure 34a), it may be opened up to become a rectangle on a plane,
without stretching or shrinking (Figure 34b). A helix on a cylinder now becomes a straight
line on the developed cylinder. To account for the periodicity in φ, the rectangle may be
repeated an infinite number of times in the manner shown in Figure 35. Then P has images
P1, P−1, P2, P−2, . . .. All possible geodesics joining P and Q on a cylinder may be constructed by
drawing line segments between Q and P, P1, P−1, . . .. For example, geodesic QP1 goes from Q to
P on the cylinder after revolving the cylinder once; and geodesic QP−2 goes from Q and P after
revolving the cylinder twice in the opposite direction.

(iii) Surface of revolution. As discussed in Section 7 (Figure 18), a surface of revolution
may be described by

x = ρ cosφ, y = ρ sinφ, z = f (ρ) (12.17)

Simple calculations lead to (u= ρ and v = φ)

E = 1+ ( f ′)2, F = 0, G = ρ2 (12.18a)

e =
f ′′
p

1+ ( f ′)2
, f = 0, g =

ρ f ′
p

1+ ( f ′)2
(12.18b)

‖Surfaces with property (a) but not necessarily (b) are called ruled surfaces. A hyperbolic paraboloid (Figure
14), or a hyperboloid of one sheet (Figure 16) is a ruled surface, but not developable.
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(a) (b)

Figure 34: A cylinder may be developed into a rectangle on a plane.

Figure 35: Developed cylinder and its "images."

where f ′ is the derivative of f (ρ) with respect to ρ. Then Christoffel symbols in (12.3) are
found to be

Γ 1
11 =

f ′ f ′′

1+ ( f ′)2
, Γ 2

11 = 0 (12.19a)

Γ 1
12 = 0, Γ 2

12 =
1
ρ

(12.19b)

Γ 1
22 =

−ρ
1+ ( f ′)2

, Γ 2
22 = 0 (12.19c)

Since the two equations in (12.6) are dependent, it is sufficient to take (12.6b), namely

d2φ

dσ2
+

2
ρ

dρ
dσ

dφ
dσ
= 0 (12.20)

The above differential equation is the same as (12.13), whose solution is given in (12.14).
Substituting (12.14) into the first fundamental form in (12.7) or

dσ2 = [1+ ( f ′)2]dρ2 +ρ2dφ2 (12.21)

we have

dφ =
c
ρ

�

1+ ( f ′)2

ρ2 − c2

�1/2

dρ

or

φ = φ0 + c

∫

1
ρ

�

1+ ( f ′)2

ρ2 − c2

�1/2

dρ (12.22)

which is the desired equation of a geodesic defined by two constants φ0 and c. For the special
case c = 0, (12.22) becomes

φ = φ0 (12.23)
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Thus, all generating lines (meridians) of a surface of revolution are geodesics. As an example,
let the surface be a circular cone with a half-cone angle θ0. Then

f (ρ) = ρ cotθ0 (12.24)

Substituting (12.24) into (12.22) and carrying out the integral, we obtain the equation of a
geodesic on a cone, namely

ρ = c sec[(φ −φ0) sinθ0] (12.25)

Using the spherical coordinate r = ρ cscθ0, we may rewrite (12.25) as

r cos[(φ −φ0) sinθ0] = r0 (12.26)

where r0 is another constant. On a developed cone in Figure 36, (12.28) represents a straight
line M P with r0 = OM and r = OP. The fact that the geodesics of a cone are straight lines on
a developed cone is in agreement with our discussion in Example (ii).

Figure 36: A geodesic M P on a developed cone and its "images."
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13 Summary

Let us first summarize the results in Sections 2 to 6 for a curve:

(1) An arbitrary-speed curve can be represented by a parametric equation with parameter
t:

r⃗(t) = (x(t), y(t), z(t)), t1 < t < t2. (13.1)

Its speed is defined by

v =

�

�

�

�

d r⃗
d t

�

�

�

�

=

√

√

√

�

d x
d t

�2

+
�

d y
d t

�2

+
�

dz
d t

�2

. (13.2)

The same curve may have other representations with different speeds through a change of
parameter (passing t to a new parameter).

(2) The arc length σ(t) of a curve is defined by

σ(t) =

∫ t

t0

�

�

�

�

d r⃗
d t

�

�

�

�

d t (13.3)

in which t0 is a reference point.

(3) A unit-speed curve is a curve r⃗(σ) whose parameter is arc length σ. The Frenet
apparatus can be computed by the following formulas:

n̂(σ) =
d2 r⃗
dσ2

��

�

�

�

d2 r⃗
dσ2

�

�

�

�

(13.4a)

b̂(σ) = t̂ × n̂ (13.4b)

t̂(σ) =
d r⃗
dσ

(13.4c)

κ(σ) =

�

�

�

�

d2 r⃗
dσ2

�

�

�

�

(13.5a)

τ(σ) =
d r⃗
dσ
·
�

d2 r⃗
dσ2
×

d3 r⃗
dσ3

�

Â
�

�

�

�

d2 r⃗
dσ2

�

�

�

�

2

(13.5b)

The variation of (n̂, b̂, t̂) is given by the Frenet formula:

dn̂
dσ
= τb̂−κ t̂ (13.6)

d b̂
dσ
= −τn̂ (13.7)

d t̂
dσ
= κn̂ (13.8)

(4) For an arbitrary-speed curve r⃗(t) the formulas for the Frenet apparatus are given by

n̂= b̂× t̂ (13.9a)

b̂(t) =
r⃗ ′ × r⃗ ′′

|r⃗ ′ × r⃗ ′′|
(13.9b)

t̂(t) =
r⃗ ′

|r⃗ ′|
(13.9c)
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κ(t) =
|r⃗ ′ × r⃗ ′′|
|r⃗ ′|3

(13.10a)

τ(t) =
(r⃗ ′ × r⃗ ′′) · r⃗ ′′′

|r⃗ ′ × r⃗ ′′|2
(13.10b)

where

r⃗ ′ =
d r⃗(t)

d t
, r⃗ ′′ =

d2 r⃗(t)
d t2

, . . . (13.11)

(5) For a unit-speed curve r⃗(σ), the Frenet approximation of the curve in the neighborhood
of σ = σ0 is (Figure 9)

r⃗(σ)≈ r⃗(σ0) + (σ−σ0) t̂ +
(σ−σ0)2

2
κn̂+

(σ−σ0)3

6
κτb̂ (13.12)

where (n̂, b̂, t̂) are evaluated at σ = σ0.

Next, let us summarize the results in Sections 7 through 12 for a surface:

(6) A surface can be represented by a parametric equation with parameters (u, v):

r⃗(u, v) = (x(u, v), y(u, v), z(u, v)), u1 < u< u2 and v1 < v < v2. (13.13)

The unit surface normal at (u, v) is defined by

N̂(u, v) = µ
r⃗u × r⃗v

|r⃗u × r⃗v|
(13.14)

where µ= ±1. In EM diffraction problems, µ takes a value such that N̂ always points toward
the source.

(7) In calculating the properties of the surface in (13.13), the following parameters are
often needed:

• Coefficients of first and second fundamental forms

E = r⃗u · r⃗u, F = r⃗u · r⃗v , G = r⃗v · r⃗v (13.15a)

e = µ
r⃗uu · (r⃗u × r⃗v)p

EG − F2
, f = µ

r⃗uv · (r⃗u × r⃗v)p
EG − F2

, g = µ
r⃗vv · (r⃗u × r⃗v)p

EG − F2
(13.15b)

• Christoffel symbols

Γ 1
11 =

GEu − 2F Fu + F Ev

2(EG − F2)
, Γ 2

11 =
2EFu − EEv − F Eu

2(EG − F2)
(13.16a)

Γ 1
12 =

GEv − FGu

2(EG − F2)
, Γ 2

12 =
EGu − F Ev

2(EG − F2)
(13.16b)

Γ 1
22 =

2GFv − GGu − FGv

2(EG − F2)
, Γ 2

22 =
EGv − 2F Fv + FGu

2(EG − F2)
(13.16c)

When the surface is described by the special form

r⃗(x , y) = (x , y, f (x , y)) (13.17)
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the above parameters become

E = 1+ f 2
x , F = fx f y , G = 1+ f 2

y (13.18a)

e =∆ fx x , f =∆ fx y , g =∆ f y y (13.18b)

∆= (1+ f 2
x + f 2

y )
−1/2 (13.19)

Γ 1
11 =∆

2 fx fx x , Γ 2
11 =∆

2 f y fx x (13.20a)

Γ 1
12 =∆

2 fx fx y , Γ 2
12 =∆

2 f y fx y (13.20b)

Γ 1
22 =∆

2 fx f y y , Γ 2
22 =∆

2 f y f y y (13.20c)

When the surface is one of revolution, those parameters are given in (12.18) and (12.19).

(8) The curvature κ and the radius of curvature R in the direction dv/du are given by

κ=
1
R
=

e(du)2 + 2 f dudv + g(dv)2

E(du)2 + 2Fdudv + G(dv)2
. (13.21)

The sign of κ (or R) computed above is positive if the normal section of the surface bends
toward N̂ , and is negative if the normal section bends away from N̂ (Figure 21).

(9) At any point on a surface (except at an umbilic) a pair of orthogonal directions exists
for which κ assumes maximum and minimum values. These two directions are called principal
directions (ê1, ê2), and the two extreme values of κ are called principal curvatures (κ1,κ2).
The principal curvatures are given by

κ1,2 = κM ±
q

κ2
M −κG (13.22)

where the mean curvature is

κM =
κ1 +κ2

2
=

Eg − 2 f F + eG
2(EG − F2)

(13.23)

and the Gaussian curvature is

κG = κ1κ2 =
eg − f 2

EG − F2
. (13.24)

The two principal directions are given by

ê1 =
1
γ1
[1r⃗u +αr⃗v] (13.25a)

ê2 =
1
γ2
[β r⃗u + 1r⃗v] (13.25b)

where

α=
e−κ1E
κ1F − f

=
f −κ1F
κ1G − g

(13.25c)

β =
f −κ2F
κ2E − e

=
g −κ2G
κ2F − f

(13.25d)

γ1 = (E + 2αF +α2G)1/2 (13.25e)

γ2 = (β
2E + 2βF + G)1/2 (13.25f)

Referring to the principal direction ê1, we find the curvature in the direction α (Figure 24) is
given by

κ= κ1 cos2α+κ2 sin2α (13.26)
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(10) A necessary and sufficient condition for u- and v-parameter curves is also the lines of
curvatures: F = 0 and f = 0. When these two conditions are met, then

ê1 =
r⃗u

|r⃗u|
, ê2 =

r⃗v

|r⃗v|
(13.27)

(11) The 2× 2 curvature matrix ¯̄Q is defined on the tangent plane of a surface by the
definition in (10.2). Its elements may be computed from the formula

Q11 =
eG − f F
EG − F2

, Q12 =
f E − eF
EG − F2

(13.28a)

Q21 =
f G − gF
EG − F2

, Q22 =
gE − f F
EG − F2

. (13.28b)

(12) Instead of using the formulas in (9), the principal curvatures and directions can be
calculated from ¯̄Q:

κM =
1
2
(Q11 +Q22) (13.29a)

κG =Q11Q22 −Q12Q21 (13.29b)

α=
Q22 −κ2

Q21
=

Q12

Q11 −κ2
(13.29c)

β =
Q11 −κ1

Q12
=

Q21

Q22 −κ1
(13.29d)

Substitution of (13.29) into (13.22) and (13.25) gives the principal curvatures and directions.

(13) To the first-order approximation, surface normals drawn from adjacent points on a
line of curvature intersect. The intersecting point is located on one of the two caustic surfaces
(Figure 27).

(14) Consider a conducting surface Σ in an EM diffraction problem. At a point O (point of
reflection) on Σ, let us introduce three right-handed orthonormal base vectors (σ̂1, σ̂2, ŝ) such
that ŝ = +N̂ , pointing toward the source of the incident field (Figure 29a). Then a quadratic
approximation of Σ in the neighborhood of O is

Σ : σ = +
1
2

�

σ1

σ2

�T

· ¯̄Q
�

σ1

σ2

�

+ o(σ3
1,2) (13.30)

If (σ̂1, σ̂2) coincide with the principal directions, ¯̄Q is a diagonal matrix given by

¯̄Q =

�

κ1 0
0 κ2

�

(13.31)

where (κ1,κ2) are positive (negative) if their normal sections bend toward (away from) ŝ = N̂ .
If (σ̂1, σ̂2) make an angle ψ with principal directions, then

¯̄Q =

�

cosψ − sinψ
sinψ cosψ

��

κ1 0
0 κ2

��

cosψ − sinψ
sinψ cosψ

�T

(13.32)

(15) Consider a wavefront W of a ray pencil in an EM diffraction problem. At a point O
(a reference point on the axial ray) on W , let us introduce three right-handed orthonormal
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base vectors (σ̂1, σ̂2, ŝ) such that ŝ = −N̂ , pointing toward the direction of wave propagation
(Figure 29b). Then a quadratic approximation of W in the neighborhood of O is

W : σ = −
1
2

�

σ1

σ2

�T

· ¯̄Q
�

σ1

σ2

�

+ o(σ3
1,2) (13.33)

where ¯̄Q is given again by (13.31) or (13.32). The principal curvatures (κ1,κ2) are positive
(negative) if their normal sections of the wavefront are divergent (convergent).

(16) A geodesic on a surface is a curve of vanishing geodesic curvature. It may be described
by any one of the following three differential equations:

d2u
dσ2

+ Γ 1
11

�

du
dσ

�2

+ 2Γ 1
12

du
dσ

dv
dσ
+ Γ 1

22

�

dv
dσ

�2

= 0 (13.34a)

d2v
dσ2

+ Γ 2
11

�

du
dσ

�2

+ 2Γ 2
12

du
dσ

dv
dσ
+ Γ 2

22

�

dv
dσ

�2

= 0 (13.34b)

d2v
du2

= Γ 1
22

�

dv
du

�3

+ (2Γ 1
12 − Γ

2
22)
�

dv
du

�2

+ (Γ 1
11 − 2Γ 2

12)
dv
du
− Γ 2

11 (13.35)

where σ is the arc length of the geodesic. With the aid of the first fundamental form

dσ2 = E du2 + 2F du dv + G dv2 (13.36)

we may eliminate σ in (13.34) and recover (13.35).

(17) For two points on a surface, the minimum arc joining them, if it exists, must be a
geodesic.

(18) For a surface of revolution, the differential equation in (13.31) has been solved, and
the solution for the geodesic is given in (12.22).

54



Mathematics Notes

Subject Index

arc length, 10

binormal, 11

caustic, 34
Christoffel symbol, 44, 51
cone

geodesic, 49
representation, 21

conic, 7
curvature

Gaussian, 30, 33, 38
geodesic, 44
line of, 31
mean, 30, 33
of curve, 12
of surface, 25
principal, 30
radius of, 26
sign of, 26, 42, 52

curvature matrix
calculation, 38
definition, 37
diagonalization, 38
eigenvector, 38

curve
approximation, 17
arc length, 10
Frenet apparatus, 50
reparametrization, 10
representation, 7
speed, 10
torsion, 11

developable surface, 47

eccentricity, 7
ellipse, 8

focus, 35
Frenet formula, 13, 50
fundamental forms

first and second, 27
fundamental matrices

first and second, 38

generator, 47

geodesic, 44
on developable surface, 47
on surface of revolution, 47

helix
Frenet apparatus, 13, 16

hyperbola, 8
hyperboloid, 22

meridian, 23

normal
of curve, 11
of surface, 25

normal plane, 11
normal section, 25

osculating plane, 11

parabola, 7
paraboloid, 21, 22
parallel, 23
principal directions, 30, 39

rectifying plane, 11
reflecting surface

approximation of, 42, 53
normal of, 25, 41

Rodrigues
formula of, 30, 35

ruled surface, 47

sphere
area, 20
representation, 20

straight line, 6
surface

approximation, 41
area, 20
curvature, 25
normal, 25
principal direction and curvature, 30
representation, 19
tangent plane, 25

surface of revolution
Christoffel symbol, 48
fundamental form, 48
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Mathematics Notes

representation, 23

torsion, 11, 17

umbilic, 31
of ellipsoid, 33

wavefront
approximation of, 53
curvature of, 26
normal of, 25, 41

Weingarten equations, 38
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