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Steepest Descent for Radiation Integrals

EM radiation/scattering in exterior regions can be expressed as radiation
integrals in the spatial or spectral domain. In general, these integrals
cannot be evaluated exactly in closed form.
Approximate analytical methods are therefore used. In this section, the
focus is on spectral-domain integrals of the form:

I(K) =
∫

C
g(ξ) eKf (ξ) dξ,

where
K is a large positive parameter (increasing with frequency),
f (ξ), g(ξ) are analytic on the contour C,
C extends to infinity, where the integrand vanishes.
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Saddle Point Topology

Asymptotic high-frequency (HF) solutions improve as K → ∞. The
method of steepest descent transforms I(K) into a simpler canonical form
that retains all essential features. We define a stationary point (saddle
point) of the integrand in

I(K) =
∫

C
g(ξ)eKf (ξ) dξ

by the condition
df (ξ)

dξ

∣∣∣∣
ξ=ξs

= f ′(ξs) = 0,

where ξs is a first-order saddle point if f ′′(ξs) ̸= 0.
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Saddle Point Topology
Let ξ = x + iy, where x, y ∈ R. Express f (ξ) as:

f (ξ) = u(x, y) + iv(x, y).
where u, v ∈ R. Then

f ′(ξ) = du
dξ + i dv

dξ =

(
∂u
∂x

dx
dξ +

∂u
∂y

dy
dξ

)
+ i

(
∂v
∂x

dx
dξ +

∂v
∂y

dy
dξ

)
.

At the stationary point ξ = ξs, let C̃ define a path with passes ξs, and
dξ = dx + i dy, dx = dξ cosα, dy = dξ sinα.

Reading, p. 754
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Saddle Point Topology
It follows that

du
dξ =

∂u
∂x cosα+

∂u
∂y sinα;

dv
dξ =

∂v
∂x cosα+

∂v
∂y sinα,

At ξ = ξs, we have the above both equal to zero. Since α can be arbitrary,
we have

∂u
∂x =

∂u
∂y =

∂v
∂x =

∂v
∂y = 0.

Since f (ξ) is analytic at ξ = ξs, from the Cauchy–Riemann equations:
∂u
∂x =

∂v
∂y ,

∂u
∂y = −∂v

∂x ,

the Laplace equation is also satisfied:
∂2u
∂x2 +

∂2u
∂y2 = 0, ∂2v

∂x2 +
∂2v
∂y2 = 0.

Thus, u and v are harmonic functions that cannot have absolute maxima
or minima.

J. W. Liu Asymptotic Evaluation of Integrals December 2, 2025 8 / 34



Saddle Point Topology

In particular, attention is given to the topology of u(ξ), since it determines

|eKf (ξ)| = eKu(ξ),

and thereby governs the behavior of the integral I(K).
It is therefore desirable to deform the contour C so that eKu(ξ) varies most
rapidly while ensuring that I(K) remains bounded.

Reading, p. 755
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Saddle Point Topology
To examine the maximum rate of change of du

dξ as a function of α at
ξ = ξs, the condition for a maximum is

∂

∂α

(
∂u
∂ξ

)
=

∂2u
∂α∂ξ

= 0 = −∂u
∂x sinα+

∂u
∂y cosα.

From the Cauchy–Riemann equations, the above continues

... = −∂v
∂y sinα− ∂v

∂x cosα = −∂v
∂y

dy
dξ − ∂v

∂x
dx
dξ = −dv

dξ ,

or equivalently,
∂2u
∂α∂ξ

= 0 ⇒ −dv
dξ = 0.

Therefore, the steepest direction of C̃ through ξs is along a path where
dv
dξ = 0, i.e., v = constant. This is the path on which eiKv(ξ) = constant,
corresponding to the constant phase path.
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Saddle Point Topology

Near ξ = ξs, expand

f (ξ) ≈ f (ξs) +
1
2 f ′′(ξs)(ξ − ξs)

2

for small |ξ − ξs|. Thus,

eKf (ξ) ≈ eKf (ξs)eKf ′′(ξs)(ξ−ξs)2/2.

Let ξ − ξs = |ξ − ξs|eiθ, then

eKf (ξ) ≈ eKf (ξs)eKf ′′(ξs)|ξ−ξs|2(cos 2θ+i sin 2θ)/2.

Let δ = arg f ′′(ξs) + 2θ, then

eKf (ξ) ≈ eKf (ξs)eK|f ′′(ξs)||ξ−ξs|2(cos 2δ+i sin 2δ)/2.
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Saddle Point Topology

The following are true:
δ = 0, π: steepest ascent path (SAP).
δ = ±π

2 : steepest descent path (SDP).
δ = ±π

4 ,±
3π
4 : constant level path.

Reading, p. 755
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Asymptotic Evaluation: First-Order Saddle Point (No
Singularities)

Since I(K) cannot usually be solved in closed form, the steepest descent
method is used to obtain an approximate solution valid for
moderate-to-large K. COnsider a first-order saddle point
f ′(ξs) = 0, f ′′(ξs) ̸= 0.
The original contour C is deformed into the SDP. If g(ξ) is free of
singularities, then C can be transformed continuously into the SDP. Since
|eKf| decays rapidly on either side of ξ = ξs, it is sufficient to deform C
into the SDP only in the region near the saddle point ξs.
Elsewhere, contributions from the SDP are exponentially small or
negligible, and the SDP can merge back into C.
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Asymptotic Evaluation: First-Order Saddle Point (No
Singularities)
Along the SDP:

|eKf (ξ)| ≤ |eKf (ξs)|, ℜf (ξ) ≤ ℜf (ξs), ℑf (ξ) = ℑf (ξs).

Main contribution to I(K) occurs near ξ = ξs.
Mapping to canonical form:

f (ξ)− f (ξs) = −α2, −∞ < α < ∞,

with saddle point at α = 0. Thus,

I(K) =
∫

SDP
g(ξ)eKf (ξ)dξ = eKf (ξs)

∫ ∞

−∞
g(ξ) dξ

dα e−Kα2dα

= eKf (ξs)
∫ ∞

−∞
G(α) e−Kα2dα,

where
G(α) = g(ξ) dξ

dα.
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Asymptotic Evaluation: First-Order Saddle Point (No
Singularities)
The term e−Kα2 decays rapidly away from α = 0 on the SDP. For slowly
varying G(α), one may approximate

I(K) = eKf (ξs)
∫ ∞

−∞

[ ∞∑
n=0

cnα
n
]

e−Kα2 dα,

where
G(α) =

∞∑
n=0

cnα
n, cn =

1
n!

dnG(α)
dαn

∣∣∣∣
α=0

.

Interchanging sum and integration:

I(K) = eKf (ξs)
∞∑

n=0

1
n!

dnG(α)
dαn

∣∣∣∣
α=0

∫ ∞

−∞
αne−Kα2dα.
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Asymptotic Evaluation: First-Order Saddle Point (No
Singularities)
The Gaussian integral

∫ ∞

−∞
αne−Kα2 dα =


Γ
(n+1

2
)

K(n+1)/2 , n even,

0, n odd,

where Γ(z) is the Gamma function. For n = 2m, this reduces to∫ ∞

−∞
α2me−Kα2 dα =

Γ
(
m + 1

2
)

Km+1/2 , m = 0, 1, 2, . . .

Hence, the asymptotic expansion of I(K) in inverse powers of large K is

I(K) = eKf (ξs)
∞∑

m=0

1
(2m)!

d2mG(α)
dα2m

∣∣∣∣
α=0

Γ
(
m + 1

2
)

Km+1/2 .
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Asymptotic Evaluation: First-Order Saddle Point (No
Singularities)
For large K, it suffices to retain only the leading term (m = 0):

I(K) ∼ G(0) eKf (ξs)
√

π
K .

Noted that

f ′(ξ) dξ
dα = −2α, f ′(ξ) d2ξ

dα2 + f ′′(ξ)
(

dξ
dα

)2
= −2.

Hence,
dξ
dα

∣∣∣∣
α=0

=

√
−2

f ′′(ξs)
.

We have

I(K) ∼ g(ξs)

[
dξ
dα

]
α=0

eKf (ξs)
√

π
K = g(ξs)

√
−2π

Kf ′′(ξs)
eKf (ξs).
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Asymptotic Evaluation: First-Order Saddle Point (No
Singularities)
Along the steepest descent path (SDP), let

dξ
dα

∣∣∣∣
α=0

=

∣∣∣∣∣
√

−2
f ′′(ξs)

∣∣∣∣∣ eiϕs ,

where ϕs = arg(dξ). Thus,

I(K) ∼ g(ξs)

∣∣∣∣∣
√

−2
f ′′(ξs)

∣∣∣∣∣ eiϕseKf (ξs).

Reading, p. 760
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)
Consider

I(K) =
∫

C
g(ξ)eKf (ξ)dξ.

- f (ξ) has a first-order saddle point at ξ = ξs, so f ′(ξs) = 0, f ′′(ξs) ̸= 0.
- g(ξ) has a simple pole at ξ = ξp.
Deforming the contour C into the SDP and applying the residue theorem:

I(K) =
∫

SDP
g(ξ)eKf (ξ)dξ + (2πiRp)Q,

where Rp is the residue at ξ = ξp.

Q =


+1, SDP encloses ξp = ξp1 (CCW),
−1, SDP encloses ξp = ξp2 (CW),
0, SDP encloses no pole, ξp = ξp3.

Reading, p. 757
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)
The mapping

f (ξ) = f (ξs)− α2

transforms the SDP from the ξ-plane to the real α axis. The residue Rp is

Rp = lim
ξ→ξp

(ξ − ξp)g(ξ)eKf (ξ),

or equivalently

Rpe−Kf (ξp) = lim
ξ→ξp

(ξ − ξp)g(ξ) = lim
α→αp

(α− αp)G(α).

To measure the separation between ξs and ξp:

f (ξs)− f (ξp) = α2
p ≡ −ia, αp =

√
f (ξs)− f (ξp).
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)
If ξp is close to ξs, then

f (ξp) ≈ f (ξs) +
1
2 f ′′(ξs)(ξp − ξs)

2, α2
p ≈ − f ′′(ξs)

2 (ξp − ξs)
2.

Let ξp − ξs = |ξp − ξs|eiϕp , where ϕp is the angle of the vector from ξs to
ξp. Thus,

αp ≈ |ξp − ξs|eiϕp√
−2/f ′′(ξs)

.

Since √
−2

f ′′(ξs)
=

∣∣∣√ −2
f ′′(ξs)

∣∣∣eiϕs ,

the argument of αp is

αp ≡ |αp|eiψ ≈ |ξp − ξs|ei(ϕp−ϕs)∣∣∣√−2/f ′′(ξs)
∣∣∣ , ξp near ξs.
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)

The pole of g(ξ) at ξ = ξp strongly influences the saddle point
contribution from ξ = ξs when ξp is near ξs (i.e., small ia). If ia is large, ξp
is far from ξs, and the asymptotic solution is a superposition of:
- isolated pole contribution (residue term),
- isolated saddle point contribution (SDP term).
As ξp → ξs, g(ξs) becomes singular. Thus, the Pauli–Clemmow method
(PCM) accounts for the pole at α = αp by splitting

G(α) ≡ Ga(α)

α− αp
,

where Ga(α) is analytic in the α-plane.
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)
The asymptotic evaluation can now be expressed as

I PCM(K) = I PCM
SDP (K) + 2πiRpQ,

with
I PCM

SDP (K) = eKf (ξs)
∫ ∞

−∞

Ga(α)

α− αp
e−Kα2 dα.

Since Ga(α) is analytic in the α-plane (near α = 0 and α = αp), it can be
expanded as a power series:

Ga(α) =
∞∑

n=0
cnα

n.

Retaining only the leading term (n = 0) yields

Ga(α) ≈ c0 = Ga(0).
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)
Thus

I PCM
SDP (K) ∼ eKf (ξs)Ga(0)

∫ ∞

−∞

(α+ αp)

(α− αp)(α+ αp)
e−Kα2 dα

∼ eKf (ξs)Ga(0)αp

∫ ∞

−∞

e−Kα2

α2 − α2p
dα,

since α
α2−α2p

e−Kα2 is odd. With Ga(0) = −αpG(0), α2
p = −ia, and

G(0) = g(ξs)
[

dξ
dα

]
α=0

= g(ξs)
√

−2
f ′′(ξs)

eiϕs :

I PCM
SDP (K) ∼ eKf (ξs)(ia)G(0)

∫ ∞

−∞

e−Kα2

α2 + ia dα

∼ g(ξs)
√

−2π
Kf ′′(ξs)

eiϕseKf (ξs)

[√
K
π (ia)

∫ ∞

−∞

e−Kα2

α2 + ia dα
]
.
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)
The bracketed term can be expressed as a Fresnel-type integral. Let√

Ka > 0 (so √a > 0 initially), and define

F (
√

Ka) ≡
√

K
π (ia)

∫ ∞

−∞

e−Kα2

α2 + ia dα =
√

K
π (ia)I0(K).

From
I0(K)e−iKa =

∫ ∞

−∞

e−K(α2+ia)

α2 + ia dα,

It follows
d

dK
(

I0(K)e−iKa
)
= −

∫ ∞

−∞
e−K(α2+ia) dα

= −2e−iKa
∫ ∞

0
e−Kα2 dα = −

√
π
K e−iKa

Since
∫∞

0 e−Kα2 dα = 1
2
√

π
K .
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)
Integrating the above both sides with:∫ ∞

K
du d

du
(

I0(u)e−iua
)
= −

√
π

∫ ∞

K

e−iua
√u du.

Thus,
I0(u)e−iua

∣∣∣∞
K

= −
√
π

∫ ∞

K

e−iua
√u du.

Since I0(u) → 0 as u → ∞, and let τ =
√ua, we get

I0(K)e−iKa = 2
√

π
a

∫ ∞

√
Ka

e−iτ2 dτ.

Finally:
F (

√
Ka) = 2i

√
Ka eiKa

∫ ∞

√
Ka

e−iτ2 dτ,
√

Ka > 0.
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)

The derivation above is defined for
√

Ka > 0. It exhibits a branch cut.

If √a < 0 or
√

Ka < 0, replace
√

Ka
by −

√
Ka so that F → 1 as

±
√

Ka → ∞.
By analytic continuation, F can be
extended to complex

√
Ka, keeping

the branch where F → 1 for
| ±

√
Ka| → ∞.

The proper branch is defined for
− 3π

4 < arg
√

Ka < π
4 , or equivalently

for √a > 0.
On the improper branch
(π

4 < arg
√

Ka < 5π
4 or √a < 0), one

replaces F (
√

Ka) by F (−
√

Ka).
Reading, p. 1090
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)
Thus, a more general expression for F can be expressed as

F(±
√

Ka) = ±2i
√

Ka eiKa
∫ ∞

±
√

Ka
e−iτ2 dτ,

 − 3π
4 < arg

√
Ka <

π

4 ,
π

4 < arg
√

Ka <
5π
4

 .

For small
√

Ka,
F (±

√
Ka)

∣∣
(±

√
Ka) small ≈ ±

√
πiKa eiKa.

For large
√

Ka, that is
| ±

√
Ka| → ∞.

The asymptotic behavior of F (±
√

X) for X = Ka is

F (±
√

X) ∼ 1 − 1
2iX + · · · , |X| → ∞.

Physically, large |
√

Ka| means the pole is far from the saddle point.
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)

Reading, p. 880
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Asymptotic Evaluation: Saddle Point Near a Simple Pole
(PCM)

From the above analysis, the leading term of the PCM-based SDP
evaluation is

I PCM
SDP (K) ∼ g(ξs)

∣∣∣√ −2π
Kf ′′(ξs)

∣∣∣ eiϕseKf (ξs)F (±
√

Ka).

Also from α2
p = −ia or a = eiπ/2α2

p, so
√

Ka = αpeiπ/4√K,

argαp = arg
√

Ka − π
4 .

Thus,

I PCM
SDP (K) ∼ g(ξs)

∣∣∣√ −2π
Kf ′′(ξs)

∣∣∣ eiϕseKf (ξs)F (±
√

Ka), ℑαp ≶ 0.
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Summary

Case A: No singularities in g(ξ)

I(K) ∼ g(ξs)

√
−2π

K f ′′(ξs)
e iϕs eKf (ξs).

Case B: Simple pole of g(ξ) at ξ = ξp
(PCM)

IPCM(K) = 2πi Rp Q

+ g(ξs)

√
−2π

K f ′′(ξs)
e iϕs eKf (ξs) F(±

√
Ka).

Fresnel transition function F(Ka)

F(±
√

Ka) =± 2i
√

Ka eiKa
∫ ∞

±
√

Ka
e−iτ2

dτ,[
− 3π/4 < arg

√
Ka < π/4,

π/4 < arg
√

Ka < 5π/4

]
.

Parameters/definitions
I(K) =

∫
C

g(ξ) eKf (ξ) dξ, K ≫ 1.

ξs: first-order saddle, f ′(ξs) = 0, f ′′(ξs) ̸= 0.

Mapping on SDP: f (ξ) = f (ξs) − α2,

G(α) = g(ξ)
dξ
dα

.

ϕs = arg

[ dξ
dα

∣∣∣∣
α=0

]
(SDP direction at saddle).

Pole separation: α2
p = f (ξs) − f (ξp) ≡ −ia,

√
Ka = αpeiπ/4√K.

Residue term: Rp = lim
ξ→ξp

(ξ − ξp) g(ξ) eKf (ξ).

Enclosure index Q ∈ {+1,−1, 0} ( +1: CCW, -1:
CW, 0: none ).
Asymptotics of F

F(±
√

X) ∼ 1−
1

2iX
+ · · · , X = Ka, |X| → ∞,

F(±
√

Ka) ≈ ±
√
πiKa eiKa (small

√
Ka).
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