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Steepest Descent for Radiation Integrals

EM radiation/scattering in exterior regions can be expressed as radiation
integrals in the spatial or spectral domain. In general, these integrals
cannot be evaluated exactly in closed form.

Approximate analytical methods are therefore used. In this section, the
focus is on spectral-domain integrals of the form:

I(K) = /C g(€) &1 i,

where
e Kiis a large positive parameter (increasing with frequency),
o f(£),&(&) are analytic on the contour C,
o C extends to infinity, where the integrand vanishes.
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Saddle Point Topology

Asymptotic high-frequency (HF) solutions improve as K — oco. The
method of steepest descent transforms /(K) into a simpler canonical form
that retains all essential features. We define a stationary point (saddle

point) of the integrand in

I(K) = /C g(6) 1 dg

by the condition

df(§) ‘
a e,

where & is a first-order saddle point if /(&) # 0.

= fl(éS) =0,
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Saddle Point Topology

Let £ = x+ iy, where x,y € R. Express f(£) as
F(€) = ulx.y) + iv(x, y).
where u,v € R. Then

f’({)—@+iﬂ/— 8udx+8udy 8vdx+8vdy
Cde T de \Oxdf  Oyde Oxd¢  OydE

At the stationary point £ = &, let C define a path with passes &;, and
dé = dx+ idy, dx=décosa, dy= dfsina.

<

C Reading, p. 754
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Saddle Point Topology

It follows that
du Ou cosar+ ou i dv Ov cosar+ Vi
- = 1% — sinq; _— = — « - Sin &,
d¢  0Ox Oy dé  Ox dy
At & = &, we have the above both equal to zero. Since « can be arbitrary,
we have
du_ou_ov_ov_
ox Oy 0Ox Oy
Since f(&) is analytic at £ = &, from the Cauchy—Riemann equations:
ou_ov  ou_ ov
ox oy’ dy  Ox’
the Laplace equation is also satisfied:
0%u  0%u v v
— +— =0, — 4+ — =0.
Ox2  0y? 0x2  0y?
Thus, u and v are harmonic functions that cannot have absolute maxima

or minima.
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Saddle Point Topology

In particular, attention is given to the topology of u(&), since it determines

|KF(O)] = KU(E),

and thereby governs the behavior of the integral I(K).

It is therefore desirable to deform the contour C so that €“(€) varies most
rapidly while ensuring that /(K) remains bounded.

Reading, p. 755
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Saddle Point Topology

To examine the maximum rate of change of ¢ dg as a function of « at
& = &, the condition for a maximum is

i @ = O%u =0= @sm —|—@cos
da\ag) ~ Bade ~  ax "H T, %

From the Cauchy—Riemann equations, the above continues

= ——Vsina — 8Vcoso< = —@/ﬂ — @i( _ﬂ/
T 9y Ox Jyde  Oxde  dE’
or equivalently,
0%u B dv

=0 = ——=0.
Oa0€ dé
Therefore the steepest direction of C through & is along a path where
€ =0, i.e., v= constant. This is the path on which eX"(¢) = constant,
correspondlng to the constant phase path.
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Saddle Point Topology

Near £ = &, expand
F€) ~ f(&) + 27 (&)(€ — &)°
for small |{ — &|. Thus,
SKF(E) o oKF(&) KF(6:)(6—E5)*/2
Let & — & = | — &le?, then
KF(E) y KF(&s) KF" (65)|E—Es[* (cos 20 +isin 260) /2.
Let § = arg (&) + 26, then

KF(E) o GKF(E) KIF(69) |6~ (cos 20 +isin 26) /2.
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Saddle Point Topology

The following are true:
@ 0 =0, 7: steepest ascent path (SAP).
@ 0 = £7: steepest descent path (SDP).
e 0= i%,i?ﬂf; constant level path.

Reading, p. 755
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Asymptotic Evaluation: First-Order Saddle Point (No

Singularities)

Since I(K) cannot usually be solved in closed form, the steepest descent
method is used to obtain an approximate solution valid for
moderate-to-large K. COnsider a first-order saddle point

f,(gs) = 07 f//(gs) 7é 0.

The original contour C is deformed into the SDP. If g(&) is free of
singularities, then C can be transformed continuously into the SDP. Since
|eKf| decays rapidly on either side of & = &, it is sufficient to deform C
into the SDP only in the region near the saddle point &;.

Elsewhere, contributions from the SDP are exponentially small or
negligible, and the SDP can merge back into C.
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Asymptotic Evaluation: First-Order Saddle Point (No

Singularities)

Along the SDP:
| (O] < X&),

RE(E) < RF(S),  SF(E) = SF(&s)-
Main contribution to /(K) occurs near £ = &s.

Mapping to canonical form:

(&) — f(&) = —a?,  —oo<a< oo,
with saddle point at & = 0. Thus,

_ KA ge = K16 [ gle) B8 ke
() = [ a(€)e" O = 1) [ g) e

= er(gs)/ G(a) e K’ da,
where de
Gle) = g(€) o
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Asymptotic Evaluation: First-Order Saddle Point (No

Singularities)

The term e K" decays rapidly away from o = 0 on the SDP. For slowly
varying G(«), one may approximate

where

s 1 d"G
- Z cnl”, Ch = — (04)
n=0 ’

Interchanging sum and integration:

1 d"G(a
(D)
Z dOé"

o 2
/ a"e K da.
a=0 J —o0
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Asymptotic Evaluation: First-Order Saddle Point (No

Singularities)

The Gaussian integral

(%)
/ Y ane ke go — | KrD2e TN
- 0, n odd,

where ['(z) is the Gamma function. For n = 2m, this reduces to

) r 1
azme_Ka2da:M m=0,1,2,...
o Km+1/2 b b b b

Hence, the asymptotic expansion of /(K) in inverse powers of large K is

1 P"G(a)
(2m)!  da®m

r(m+3)
Km+1/2 :

Nk

I(K) = K (&s)

0

3
I
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Asymptotic Evaluation: First-Order Saddle Point (No

Singularities)

For large K, it suffices to retain only the leading term (m = 0):

I(K) ~ G(0) 7€), /7.
Noted that
. d P dé 2
QG =2 OGSO (%) =2
Hence,
d€ -2
da F1(&)
We have

(5)
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Asymptotic Evaluation: First-Order Saddle Point (No

Singularities)

Along the steepest descent path (SDP), let

LS I I e P
dor|, g &)
where ¢s = arg(df). Thus,
I(K) ~ g(&s) f’&f ) o KI(ES)
S
Im& |
4 SDP
0 &

- P Re &
| oo
1

| Reading, p. 760

Asymptotic Evaluation of Integrals December 2, 2025 19/34



Table of contents

@ Asymptotic Evaluation: Saddle Point Near a Simple Pole (PCM))

Asymptotic Evaluation of Integrals December 2, 2025 20/34



Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)
Consider
10K = [ ey ek,
C

- f(€) has a first-order saddle point at £ = &, so /(&) =0, /(&) # 0.
- g(€) has a simple pole at £ = &p,.

Deforming the contour C into the SDP and applying the residue theorem:

K0 = [ (e} O + (2riRy)
SDP
where R, is the residue at £ = §,,.

Reading, p. 757

+1, SDP encloses £, = £p1 (CCW), Imé& SDP
Q= (¢ —1, SDP encloses &, = £p (CW),

0, SDP encloses no pole, &, = &p3.

SDp
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

The mapping
f(&) = f(&) — o®

transforms the SDP from the &-plane to the real o axis. The residue R, is

Ry = Jim (¢ — &)g(¢)e""),

or equivalently

Rue 16 — lim (€ ~ )(6) i (o — 05) o).

To measure the separation between & and &p:

f(&s) — f(&p) = 04;2; = —ia, ap=/ f(&s) — (&p)-
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)
If &y is close to &, then

F(&p) ~ F(Es) + AF(E)(&p — &5)2, a2 m — (e, — g2,

Let &, — &s = |€p — &s|€®?, where ¢, is the angle of the vector from & to
ép. Thus,

1€p — §s|ei¢p ‘
—2/f"(&)

Vot = [V rele

~

OépN

Since

i
9

the argument of a, is

1€p — & e(#p=0)

|V=2/7"(E)
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

The pole of g(&) at & = &, strongly influences the saddle point
contribution from £ = &s when &, is near & (i.e., small jia). If jia is large, &,
is far from &, and the asymptotic solution is a superposition of:

- isolated pole contribution (residue term),

- isolated saddle point contribution (SDP term).

As &, — &, g(&s) becomes singular. Thus, the Pauli-Clemmow method
(PCM) accounts for the pole at o = ap, by splitting

G(a) =

a— Qp

where G,(a) is analytic in the a-plane.
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)
The asymptotic evaluation can now be expressed as

PM(K) = 1ESH(K) + 2riR, Q.
with

G
IS5R(K) = wﬁ‘a@ewM

a — Qp

Since G,(a) is analytic in the a-plane (near & = 0 and o = ), it can be
expanded as a power series:

o0
S e
n=0
Retaining only the leading term (n = 0) yields

Ga(a) = ¢ = G4(0).
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

Thus

PCM 1y KF(Es) > (o + ap) Ka?
B0 ~ 19G0) [ n e e
00 e—Koz2

~ i) Ga(O)ap/ —— da,

2 2
oo F —

since —*— e Ko? is odd. With G, (0) = —apG(0), a;‘; = —ia, and
P
60) = &(&) [5] = el&)/msy &
—Ka?

: > e
IES{\DA(K) ~ er(Es)(Ia)G(O)/ m dov

') _ Ka?
—27r its KF(ES) |\ K e
~ (&) KF7(€ € [\/;('a) /_oo a2 +ia do‘] ‘
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

The bracketed term can be expressed as a Fresnel-type integral. Let
VKa> 0 (so v/a > 0 initially), and define

F(VKa) = \/E(ia) /Z ;ia; dov = \/g(ia)lo(K)-

1

From
0o —K(a?+ia)

/O(K)e—iKa:/ €

fdo"
Lo O+t Ia

It follows

diK(IO(K)e_iKa) = —/Oo e K@ +ia) gq

oo
i _Ka? .
:_2e/Ka/ eKa da:_\/%elKa
0
. _ 2
Since [;° e K da =1, /%.

Asymptotic Evaluation of Integrals December 2, 2025 27 /34



Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

Integrating the above both sides with:
00 d . 00 e—iua
du—(lo u e*’”a> = —ﬁ/ du
/K du (1) K VU

(e | = —vr [ 2 e

Since Ip(u) — 0 as u — oo, and let 7 = /ua, we get

K)ef"Ka = 2\/5/ e dr.
VKa

F(VKa) =2ivKa eiKa/ e dr, VKa>0.
VKa

Thus,

Finally:
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

The derivation above is defined for v/ Ka > 0. It exhibits a branch cut.

o If /a< 0orvKa<0, replace vKa
by —v/Ka so that F— 1 as
+vKa— o0.

@ By analytic continuation, F can be
extended to complex VKa, keeping
the branch where F — 1 for
| + VKa| — co.

@ The proper branch is defined for
—3% < argv/Ka < 7, or equivalently
for \/a > 0.

@ On the improper branch
(3 <argVKa< 2T or /a<0), one
replaces F(v'Ka) by F(—vKa).

Improper
or bottom

sheet 4
/4
Ve
ol ~

» Re Ka
5n/4
\/ -
—om

Y < 4 Proper

s or top

P sheet

Reading, p. 1090
December 2, 2025 29 /34

Asymptotic Evaluation of Integrals



Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

Thus, a more general expression for F can be expressed as

3w T
) 00 . —— <argvKa< —,
F(+£V'Ka) = +2ivVKa e’K"/ e dr, 4 4

5
+VKa %<arg Ka< 1

For small v/ Ka,
F(xV Ka)‘(im)sma” ~ +VriKae"e.
For large v/ Ka, that is

| £ VKal — oo.
The asymptotic behavior of F(£v/X) for X = Kais
1
FEVX) ~ 1— — 4 - X :
(EVR) ~ 1o be, X oo

Physically, large |/ Ka| means the pole is far from the saddle point.
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

1.0 50
45
0.8 40
355
w
80.6 ° 30§
2
% F(v/KLa)=2j/KLa e“‘“’fe‘l“ dr 25 &
S04 VKLa 20
[72]
—is ¥
a
0.2— —li0
5
o Lol ol ol o
0001 0.0l [oX} 1.0 10.0

KLo

Reading, p. 880
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Asymptotic Evaluation: Saddle Point Near a Simple Pole

(PCM)

From the above analysis, the leading term of the PCM-based SDP
evaluation is

IS5 (K) ~ &&s) |\ iy | €€ " F(£VKa).
Also from af, = —jaora= ei”/zaf,, so

VKa = a,eé™*VK,
argap = argVKa— 7.

Thus,
PCM ) ivs KFl
SDP ( ) g(gs) Kf”(z eld)se (gs)F(It\/E), SOKP § 0.
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Case A: No singularities in g(¢) Parameters/definitions
@ (K = / 8(&) O de, k> 1.
I(K) ~ g(&) —27 o9 KF(&5) <
s f//(é' ) : @ ¢, first-order saddle, f/(&5) = 0, f'/(&s) # 0.

@ Mapping on SDP: f(€) = f(£5) — a2

d§
Case B: Simple pole of g(¢) at £ =&, Glo) = &) 2

(PCM) @ ¢;=arg { :j ] (SDP direction at saddle).
@ la=0
IPCM(K) 2mi Rp Q @ Pole separation: a‘z, = f(&s) — f(&p) = —ia,
VKa = ap eiﬂ/4\/R,
+ g(fs) Kf//( ) el¢s Kf(&s) (i\/E) @ Residue term: R, = ||m (5 — &) 8(8) KF(E)

@ Enclosure index Q € {+1, —1,0} (+1: CCW, -1:
CW, 0: none).

Fresnel transition function F(Ka) © Acvmototice of F
symptotics o

. oo .2
F(:I:vKa)::I:2ivKae'Ka/ 67”— dT7 F(i\/)i(),\,lflf+“‘, X = Ka, |X| = oo,
+VvKa 2iX
— 37’1’/4 < argvV Ka < 7'('/47 F(+VKa) ~ +V7iKa e (small V/Ka).
/4 < argv/Ka < 5 /4 '
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