Advanced
Electromagnetics

Chapter 4 -Scattering



Outline

4.1 Cross Sections

4.2 Cylindrical Waves 4.4 Spherical Waves
4.2.1 Cylindrical Wave Solution 4.4.1 Spherical Wave Solution
4.2.2 Cylindrical Wave Transformation 4.4.2 Spherical Wave Transformation

4.3 Scattering from PEC Cylinders 4.5 Scattering from Dielectric Spheres



4.1 Cross Sections

In the analysis of scattering problems, the concept of cross section
Is frequently used to quantitatively characterize how an object
scatters electromagnetic waves in the far field.

The cross section provides a measure of the effective area that
Intercepts and scatters the incident energy. Various types of cross
sections are defined depending on the nature of the interaction.
These quantities are fundamental in describing the strength and
angular distribution of scattered fields, and are especially useful
when comparing the scattering behavior of different objects or
materials.



4.1 Cross Sections

Consider an incident plane wave propagating in the i direction

E, = Eje kT (4.1.1)
We define the scattered field as the difference between the total
field and the incident field

— —

E.=E, —E, (4.1.2)

A scattering problem involves solving finding the scattered field

subject to appropriate boundary conditions applied to the total
electric or magnetic field.



4.1 Cross Sections

In the far field, the scattered field takes the form

—£(5,0) (3D)

- f(51) (@2D)

E, = < o (4.1.3)

where E, = ‘EO‘ and f(§,i) is called the scattering amplitude
function representing the scattered wave in the § direction.

From (1.6.7), we have the incident and scattered power flux density:
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4.1 Cross Sections

We define the differential scattering cross section as

( .
S5
}Lr?orZH D)
04(3,1) =« 5 = | (5,
U}ggo PGl (2D)

The bistatic radar cross section (RCS) is defined as

o (5.1) = 4rto4(8,1) (3D)
biA= 2 2me,(8,1) (2D)

In 2D, g,; is also called echo width.

(4.1.5)

(4.1.6)



4.1 Cross Sections

The bistatic RCS represents the hypothetical area that, when illuminated
by the incident power density and scattering that power isotropically,
would produce the same reflected power at the radar as the actual
target. The RCS is defined to be independent of the distance between the
radar and the target. However, it strongly depends on factors such as
Incidence angle, observation angle, polarization, frequency, and the
target’s material and shape.

In particular, the monostatic or backscattering RCS refers to the case
where the radar transmitter and receiver are co-located, measuring the
power reflected directly back toward the source:

Omono (D) = 0p; (=11 (4.1.8)



4.1 Cross Sections

The scattering cross section, quantifying the amount of incident
power that is scattered by an object in all directions, is defined as

(4.1.9)

Osca = 4

|d¢ (2D)

kfzﬂ O-ddgb fZTL”D

where d{} is the differential solid angle.



4.2 Cylindrical Waves



Introduction

In this chapter, we focus on solving the wave and Helmholtz
equations in cylindrical and spherical coordinates, along with the

corresponding scattering phenomena.

As noted at the end of Section 1.5, in a source-free region, the
scalar Helmholtz equation (1.5.17) applies to all three field
components in Cartesian coordinates. In cylindrical coordinates,
only the z-unit vector remains constant, so (1.5.17) holds for the z-
component alone. In spherical coordinates, since none of the unit
vectors are constant, additional care is required in the analysis,
which is pointed out in Section 4.4.1.



4.2.1 Cylindrical Wave Solution

As mentioned above, we can simplify the vector Helmholtz
equation to a scalar one for the z component Iin cylindrical
coordinates:

1 1
~ 0, (po,¢) + ;aélp +02Y+k*Y =0 (4.2.1)
Seperation of variables are used to solve (2.2.1) by assuming
Y = B(p)P(¢p)Z(2) (4.2.2)
Subsituting back to (4.2.1), we get
1 d ( dB 1 d*°®  1d°Z 2
Ea(pg)-l-@pz d¢2+2d?+k =0 (4.2.3)



4.2.1 Cylindrical Wave Solution

Variable z is only found in the thrid term of (4.2.3) alone. Thus,

similar to the rectangular case, we have
d?z 2
172 + kZZ =0

with the elementary solution of

7 = eiikzz
Now let
k2 = k? — k2
and multiply (4.2.3) with p?, we get
pd (4B, 1d°® 45 5
de(pdp) +c1>d¢2 +kpp” =0

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)
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4.2.1 Cylindrical Wave Solution

Similarly, we can separate out the @ term as

d*d 2 .

e +ved =0 (4.2.8)
with the elemenatry solution of

O = etv? (4.2.9)

where v = m is an integer constant if we assume & is periodic over
21. Thus, (4.2.7) can now be simplified as

d?B  1dB 2 V3 p _
d_pZ_I_ZE_I_(kP_?)B_O (4.2.10)

(4.2.10) is known as the Bessel equation of order v.



4.2.1 Cylindrical Wave Solution

The first solution of (4.2.10) with finite value at p = 0 is called the
Bessel function of the first kind

Jv (kpp) = Xim=0 U kpp/2)

m!(m+v)!
For non-integer v, we have a second independent solution J_, (k,p)
whichis infinite atp = 0. If vis anintegerv = n, then

J-n(kop) = (=) (kpp) (4.2.12)

A second independent solution called Neumannn function is
constructed by

Nn (kpp) — lim ]v(kpp) COS(WT)_]—v(ka)

Vvon sin(vm)

v+2m

(4.2.11)

(4.2.13)



4.2.1 Cylindrical Wave Solution

The Hankel functions of the first and second kind are conbinations
of (4.2.11) and (4.2.13):

H (kyp) = Jn(kop) + iNy (ko) (4.2.14)
H,gz)(kpp) = ]n(kpp) — iNn(kpp) (4.2.15)
For kpp > 1, the Hankel functions approximate aymptotically as
(1) ~ 2 i(kpp—nm/2-1/4)
Hy, " (k,p) = /nkpp e'kp (4.2.16)

2 —i — —
Hy (k,p) = /—nkppe i(kpp—nm/2=m/4) (4.2.17)

which behave as an incoming and outgoing travelling waves.



4.2.2 Cylindrical Wave Transformation

Consider a z-polarized plane wave propergating in x-direction.

—

E = 2E e k¥ = Z2E e~ tkpcos o (4.2.18)

Let us expand the exponential term into an infinite sum of
cylincrical waves

e kP COSP = F oy Jn(kp)e™?® (4.2.19)
To find the coefficients a,,, we need the following identities

fozne‘i(kp cosptmd) gy = 2mi~™]_ (—kp) = 2mi "™/, (kp) (4.2.20)

[T elm=mddg = 218, (4.2.21)
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4.2.2 Cylindrical Wave Transformation

Multiply (4.2.19) with e!™?® and integrate over ¢ from 0 to 27, we get
a, =i ™ (4.2.22)

Thus, we have the following expansion
E, = Eje %% = Eje™ kP coséd — p N i=n] (kp)e™® (4.2.23)

This is called the cylindrical wave transformation which expands a
plane wave to a sum of cylindrical waves.

17



4.3 Scattering from PEC
Cvylinders



Introduction

Consider a perfectly conducting cylinder of radius a, alighed along
the z-axis and illuminated by a plane wave. Two distinct incident
polarizations are defined with respect to the cylinder’s axis: E-
polarization (transverse magnetic to z, or TM) and H-polarization
(transverse electric to z, or TE). In this section, we analyze the TM

case, and TE case is left as exercise.



4.3 Scattering from PEC Cylinders

Consider a plane wave propagating in x direction. Using the
expansionin (4.2.23), we have the incident field

—_—

E;, =Eje "2 =2E,>%__ i "], (kp)e"? (4.3.1)

Suppose the scattered field takes the form of

—_—

E, = 2E, Y% o i " a,H® (kp)en® (4.3.2)

We use the Hankel function of the second kind to represent
outgoging propagating waves. Applying the boundary condition
Ef =0atp = a, we get

Ef = Eg Sy ei™ [Ju(ka) + anHP (ka)| e =0 (4.3.3)



4.3 Scattering from PEC Cylinders

Thus, the unknown coefficient is

an = —Jn(ka)/H (ka)
Then, scattered field is:

- 5 o0 .—n JIn(ka) ;.(2) i
ES — _ZEO Zn=—ool nH,gz)(ka) Hn (kp)em('b

and the total field is:

HD (k) In(kp)~In(k@) D k)| ings
HP (ka)

— _ A w ._n
Ee = Z2E) Jin=—oo |

(4.3.4)

(4.3.5)

(4.3.6)
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4.3 Scattering from PEC Cylinders

From (4.3.17), the far scattered field is approximated as

IR

— R 2i e"kp Jn(ka)
Bs = —2E, | Do e (4.3.7)

And from (4.1.6), we can compute the echo width:
2

4y Jn(ka) ing
Opi =7 Zn=_ooH1§2) _— (4.3.8)
The resultin (4.3.8) is often normalized according to 4 as
2
71— 2|y Jn(ka) ing
Opi/A = — | Ln=—o 2O e € (4.3.9)
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4.4 Spherical Waves



4.4.1 Spherical Wave Solution

The application of the vector Helmholtz equation in spherical
coordinates is not straightforward, as none of the unit vectors are
constant throughout space. As a result, the vector Helmholtz

equation cannot be directly reduced to separate scalar Helmholtz
equations for each component.

To illustrate this, consider (3.1.4) VXVXA—k2A = ,u7 — ia),ueVV
in spherical coordinates. By assuming that A and J have only radial
component, thatis

A=A+ =] ¢ (4.4.1)



4.4.1 Spherical Wave Solution

Then, ther, 8, and ¢ components of (3.1.4) are given by

[7”2 sin 6 Jg(sin& 0) + T2 sm2 6 a‘l) T kz] Ay = lwped,V —pJ;
(4.4.2)
- ara@Ar DoV (4.4.3)
iwpe
~ g 9r00Ar = - — 0V (4.4.4)

We notice that the Lorenz gauge condition (3.1.8) cannot be used to
simplify the (4.4.3-4); instead, we choose

d0,.A, + iwueV =0 (4.4.5)



4.4.1 Spherical Wave Solution

By doing so, (4.4.3-4) Is satisfied and (4.4.2) is rewritten as

[6‘,? r2 ——0p(sin 6 9p) + sz - 0g + kzl =—uj,. (4.4.6)
Let us introduce the Debye Hertz potential.:
T, = A, /iwuer (4.4.7)

Then (4.4.6) is transformed into the scalar Helmholtz equation in
- 0g(sinf dg) +

r2sin 6

spherical coordinates with V4= Tizar(rZar) +
2.
a¢ + k“:

r2 sm2 0

(V2 + k), = — & (4.4.8)

LWET



4.4.1 Spherical Wave Solution

By duality, we also have

(V2 + k), = — —2 (4.4.10)

LwWUr

Once the solutions of (4.4.9-10) are found, the fields are given by

—_
—_— —

E=V><Vxﬁe—iwpﬁxﬁm—i=(Var+k2)ﬁe—ia)u§xﬁm
(4.4.11)
ﬁszVxﬁm+iwerﬁr—%:(V@r+k2)ﬁm+iw;ﬁxﬁe

(4.4.12)

N N

where Il, = rmn,7 = Ill,7 and I1,,, = rm,,, 7 = I1,,,7.
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4.4.1 Spherical Wave Solution

In terms of spherical components:

E,. = (02 + k*)I1, (4.4.13a)

= —a aen — S‘l‘fl” 011,y (4.4.13Db)
Ep = — 0,041l + iwpdglly, (4.4.13c)
H, = (02 + k)11, (4.4.143)

— —a 011, + S‘I‘I‘l)e 011, (4.4.14b)
Hy = rsmeﬁ 0p 1l — iwedgll, (4.4.14c)



4.4.1 Spherical Wave Solution

We considered here only the radial electric and magnetic current
sources, where m, and m,, are directly related to /.. and M,.. For
sources with 8 and ¢-components, the relations become more
complex. Nonetheless, the general electromagnetic field In
spherical coordinates can still be fully described by the two scalar
functions.

Now consider the scalar Helmholtz equation in spherical
coordinates

1 2
7"_2 a‘r (T‘ arl/)) T

. 2 2.1 _
g dg(sin 6 0g1) +r2 e a¢¢ + k“y =0

(4.4.15)



4.4.1 Spherical Wave Solution

Using separation of variables, let

Y(r,0,¢) = R(r)0(6)2(¢) (4.4.16)
Plug into (4.4.15), multiply 72 sin 8 and divide it by Y, we get

s 2 . 2
Sin 0 d (rzd—R)+Sln9 4 (sm9d9)+id—+(krsm0)2 =0

R dr dr ® db O dg?
(4.4.17)
Similar tot the cylindrical case, for the ® term, we have
O L 2p=0, P =etivd (4.4.18)
Y. , 4.

where v is a constant.



4.4.1 Spherical Wave Solution

Plug into (4.4.17) and divide it by sin? 8, we get

%c?_r (rz Z_I:) T ® siln 0 ddB (Sln 0 dB) sm2 0 T (k‘l")z =0 (4.4.19)
Introducing the constant
O L 2p =0, d=etivd (4.4.18)
Y. , 4.
where v is a constant. Now, let
2
® siln 0 ddH (Sln 0 Zz) B siz2 o _‘uz (4.4.20)

. dr( dr) + (kr)? = 2 (4.4.21)



4.4.1 Spherical Wave Solution

Since @ is periodic over 2, we let v = m an integer value, and for
(4.4.20), we get

1 d (. ,doe 2 m? _
sin 6 d6 (Sln 0 E) t (,Ll ~ sin2 0) 0=0 (4.4.22)
Let us consider two cases: the solution is azimuthal symmetric or
non-azimuthal symmetric. If it is azimuthal symmetric, we have
m = 0 and (4.2.21) isreduced to
1 d (. ,do 2~
o (sm HE) + u“® =20 (4.4.23)
To ensure that all solutions of the equation remain finite at sin @ =
4+ 1, the parameter u? must take the specific form u? = n(n + 1),
where n is a non-negative integer.




4.4.1 Spherical Wave Solution

Thus, we arrive at the following equation

1 d
sin 6 d6

which is known as the Legendre equation, and their solutions are
known as the Legendre polynomials:
d

P (COS 8) — 2NMn! (dcos@

The solutions form a complete set in the interval —1 < cosf < 1.
The orthogonality relation is

f_ll P,(cos8)P,(cos B) dcosO =

(sm 0 ) +n(n+1)0 =0 (4.4.24)

)n (cos? 9 — 1)" (4.4.25)

L5 (4.4.26)

2n+1 Nnn




4.4.1 Spherical Wave Solution

Hence, if we have a function thatliesin0 <8 <m(—1<cosf < 1),
we can expand it as

f0)=r-0a,P,(cosf), 0<O<m (4.4.27)

where
2n+1

a, = f f(B)P,(cos8)sinb do (4.4.28)

On the other hand, If the solution is non-azimuthal symmetric, we
have the associated Legendre equation

) [n(n+ 1) —

1 d
sin 6 d6

(sme =0 (4.4.29)

do sm2 6



4.4.1 Spherical Wave Solution

The solutions to (4.4.29) is the associated Legendre polynomials of
the first P7*(cos 8) and second kind Q*(cos 8). Notice that all the
solutions are necessarily singular at cos@ = +1 except for
P (cos 0) with integer m and n.

For positive integer m and n, they are related to the ordinary
Legendre polynomials as

PM(cosf) = sin™ 6 Pn(m) (cos8), m<n (4.4.30)

where P,fm) is the m'™" derivative with respect to cos 6 of the nt"-order
Legendre polynomial.



4.4.1 Spherical Wave Solution

Now let us consider (4.4.21). Substituting u? = n(n + 1), and let

R =R, (kr) = /T;Bn+1/2(kr) = |—B (4.4.31)

2kr
(4.4.21) becomes

dZ_B_|_ld_B_|_(k2 _n+1/2

dr? r dr

which is the Bessel equation and B, 4/, is the Bessel function of

ordern+ 1/2 . (4.3.31) is known as the spherical Bessel function.
We often use lowercase letter to denote the spherical modification

of the Bessel function, for example, h,(,tz)(kr) = /% H1(12+)1/2 (kr).

)B — 0 (4.4.32)

T2



4.4.2 Spherical Wave Transformation

Similar to (4.2.18), consider an x-polarized plane wave propergating
In z-direction:

—

E = RE e k% = RE e~ tkr cos b (4.4.33)

Let us expand the exponential term into an infinite sum of spherical
waves. Since (4.4.33) is azimuthal symmetric, we have m = 0, and
since we a finite value at the origin, we have

gTtkrcosb — ye g j (kr)P,(cos8) (4.4.34)
To find a,,, let us find use the orthogonality relation (4.4.26)

a,j,(kr) = 2n2+1 f_ll e tkrcosOp (cos@) dcoso (4.4.35)




4.4.2 Spherical Wave Transformation

Using the following identity
f_ll e~tkrcosOp (cos@) dcosd = 2i7 ", (kr) (4.4.36)

we have
a, =(2n+1)i™" (4.4.37)
Thus, we have the following expansion
E, = Eje % = e krcos0 = g 3® (2n+ 1)i ™"}, (kr)P,(cos 8)
(4.2.38)

This is called the spherical wave transformation which expands a
plane wave to a sum of spherical waves.
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4.5 Scattering from Dielectric
Spheres



4.5 Scattering from Dielectric Spheres

The exact solution for the scattering of a plane electromagnetic
wave by an isotropic, homogeneous dielectric sphere of arbitrary
size is commonly known as Mie theory. Consider a dieletric sphere
with radius a and permitivity / permeability equal to €,4/u,; placed in
a medium with permitivity / permeability equal to € /u.

Let the incident electric field be an x-polarized plane wave
propergating in z-direction. The radial component of incident
electric field can be express as

El = Eyje 2% .7 = E, sin 0 cos ¢p e "tk cos ¢

= ,LEO cos ¢p 0ge~tkr cos o (4.5.1)

LKT



4.5 Scattering from Dielectric Spheres

Using (4.2.38), the radial component of incident electric field can
be express as

EL = Fo €03 P 09 2im—o(2n + 1)i™"j,(kr)P,(cos9)

LKT

— iEgkj; 2y® (2n+ 1)i "}, (kr)PL(cos8)  (4.5.2)
where
—0yP,(cos8) = Pl (cos ) (4.5.3)
and

Jn(kr) = krj,(kr) (4.5.4)
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4.5 Scattering from Dielectric Spheres

To find the Debye potential of the incident field, (4.4.13a) must be
satisfied:

EL = (0% + k)L = (02 + k?)(rrl) (4.5.5)
Let us expand the Debye potential in terms of spherical harmonics

Te = Y=o Lm=0Jn(k27) Py (c0s 6) (Ampn cOS M + By Sinmeh)
(4.5.6)
Substituting (4.5.6) into (4.5.5), we get

E; = 2in=0 2m=0 %]A’n (kr) Py (cos ) (Apmy, cosme + By, sinme)
(4.5.7)
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4.5 Scattering from Dielectric Spheres

Here, the standard idenitiy is used for the derivation

L (k)] + (k)2 (kr) = n(n+ 1)), (kr) (4.5.8)

which came directly from (4.4.21). Comparing (4.5.7) and (4.5.2),
we get

(

<Amn=0, m* 1 4.5.9)
N — 2n+1 ..
\Aln = Ey (=) 1 kn(ntl)

and
By, =0 (4.5.10)
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4.5 Scattering from Dielectric Spheres

Thus, we have

' E 2n+1
Ml = ey (—) T 2 (k)P (cos 6)  (4.5.11)

Following a similar process, we can obtain

i _ Eosing oo _ \n—1 2n+1 1
T = =g Seea (—D" T 2 Jn (k)P (cos 6)  (4.5.12)

To find the scattered field inside and outside the sphere, let us first
specify the boundary conditions to be applied atr = a :

Eg = E§, Egy=E§ (4.5.13)
Ho = H§, Hy =Hj (4.5.14)

where the superscript d denotes the field inside the sphere.
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4.5 Scattering from Dielectric Spheres

As seen from (4.4.13-14) and (4.5.13-14), the boundary conditions
involve both n, =mn, +n, and m,, =m, +mn,;, making them
coupled. To simplify the analysis, it is convenient to decouple them
by deriving boundary conditions for m, and m,, individually. To
achieve this, we consider a linear combination of Eg and E4 in such

a way that all terms involving m,, cancel out: dg(sin6 Eg) + 04 Ey4 =

. 1
[69 (sinf dg) + —
we have:

a;]%a,,(me). Using similar technique, atr = a,

1 1
=0, (rm,) = ;ar(rng ); UTle = ,leT[g (4.5.15)

r

éar(rnm) = %ar(rn,%), EMmy = EqTn (4.5.16)



4.5 Scattering from Dielectric Spheres

The boundary conditions ensure that each Debye potential function
outside the sphere couples exclusively to its corresponding Debye
potential inside the sphere. As a result, if the incident field involves
terms with cos ¢ dependence, both the scattered and internal fields
will exhibit the same cos¢ dependence. Likewise, all terms
involving sin ¢ will retain their sin ¢ dependence.

Thus, for the scattered field potential, we let

TS = 0 Cosd)zn (=)t cntl anh(z)(kr)Pl(cos 0) (4.5.17)

n(n+1)
__ —Epsing n—1 2n+l1 ~(2) 1
Ty, = e Y1 (—10) n(n+1)b h,”(kr)P;(cos8) (4.5.18)

where hZ(kr) is used to meet the radiation condition.



4.5 Scattering from Dielectric Spheres

The total potential outside the sphere is thus written as
E 2n+1 ~
me =By (—)" 2 [, (k) — a2 (k)] Bl (cos 6)

n(n+1)
(4.5.19)
T = e P (0" [ (k) = bR (k)P (cos 6)
(4.5.20)

For the Debye potential inside the sphere, we let

d _ Eocos¢ n—1 2n+1 A 1
e = K5t din=1(—1) n(n+1) CnJn(kgr)Py (cos @) (4.5.21)

d Eo sin ¢ n—1 2n+l1 A 1
Tm = N k2T din=1(—1) n(n+1) dpjn(kqr)Py (cos8) (4.5.22)




4.5 Scattering from Dielectric Spheres

Applying the boundary conditions (4.5.15-16) to (4.5.19-22), we can

find the coefficients
VERG in(@)in(B) — veq jn(@)jn(B)

a, — — ~(2)1 n
" e AP @ih B -vear i (@)jn(B)

b — N n(@In(B)~ VEal n(@)jn(B)
" g R (@) jn(B)-vearm AP ()35 (B)

L\Eql
C,, = — —~(2)/
" Verg P (@in(B) —vear B (@) in(B)
d —i\JEUq

" e A (@)jn(B)—vear AP (@)1 (B)
where a = kaand f = k,a.

(4.5.23)
(4.5.24)
(4.5.25)

(4.5.26)
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4.5 Scattering from Dielectric Spheres

Let us consider the case in far field. From (4.2.17), when kr — oo,

R (ker) = / L Jneaje(kr) = intle=ikr

and we get

[I; =rn; =e

S — S ~

—ikr EO cos qb Z
n=1

n=1

Noting that in the far field

d,.11; =

—ikTIS,

nk?

011>, =

2n+1
n(n+1)

a,Pl(cos @)

2n+1
n(n+1)

———b, Pl(cos9)

—ikTIS,

(4.5.27)

(4.5.28)

(4.5.29)

(4.5.30)
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4.5 Scattering from Dielectric Spheres

we can thus express
Eg = fo(0,p)e " /1
Eyp = f5(0,0)e " /r
fo(6,¢) = —icos¢ S,(6)/k
f6(0,¢) = ising S1(60)/k

w  2n+1 . :

51(0) = Xn=q n(::—l) a,m,(cos8) + b,7,(cos )

w  2n+1 o :

5,(0) = Zn=1 n(Z:Il_—l) a,Ty(cos ) + b,ymy,(cosH))
PA(cos 6)

m,(cos @) = 7,,(cos @) = %Pnl (cos 0)

siné@

4.5.31
4.5.32

4.5.33
4.5.34

4.5.35

e e e e T
N N S N S

(4.5.36)

(4.5.37)
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4.5 Scattering from Dielectric Spheres

By (4.1.5), the differential cross section is

- 2 2 2
0,(0,0) =|f(0,9)| = ‘Cosgbszlie)‘ + ‘sinqbsll(ce)‘ (4.5.38)

And by (4.1.9), the scattering cross sectionis
Osca = f4n 04(0,9)dQ = %fon(lsz(g)lz T |51(9)|2) sinf df (4.5.39)

2 2n’+1  2n+1

AnTpb 1T, + bnnna;ftfrnr] (4.5.40)

2 _ 00 2n'+1  2n+1 « .

AnTenb 1Ty + by Tpal i1, ] (4.5.41)




4.5 Scattering from Dielectric Spheres

Using the following orthogonal property

( 0, ifn+n’

T .
Jy (rpmyr + Ta7,)sinfdl =42 (DL b 1), ifn =
2n+1 (n—1)!

\
(4.5.42)

we get

21Ta

Osca = a—22%0=1(2n + 1)(|an|2 + |bn|2) (4.5.43)
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Problems

1. From (4.2.1) and (4.2.6), plot |E; /E;| with kp for ka = 1.

From (4.2.5-6) and Maxwell equations, find the solution of
scattered and total magnetic field.

N

From Problem 2, find the induced surface current.
Derive the case of TE scattering from a PEC cylinder.
Complete the derivation to obtain (4.5.23-26).
Compute the first term of (4.5.23-24) with § < 1.

o 0~ W



