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4.1 Cross Sections

In the analysis of scattering problems, the concept of cross section
is frequently used to quantitatively characterize how an object
scatters electromagnetic waves in the far field.
The cross section provides a measure of the effective area that
intercepts and scatters the incident energy. Various types of cross
sections are defined depending on the nature of the interaction.
These quantities are fundamental in describing the strength and
angular distribution of scattered fields, and are especially useful
when comparing the scattering behavior of different objects or
materials.
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4.1 Cross Sections

Consider an incident plane wave propagating in the ̂𝜄 direction

𝐸! = 𝐸"𝑒#!$&̂')⃑ (4.1.1)
We define the scattered field as the difference between the total
field and the incident field

𝐸* = 𝐸+ − 𝐸! (4.1.2)
A scattering problem involves solving finding the scattered field
subject to appropriate boundary conditions applied to the total
electric or magnetic field.
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4.1 Cross Sections

In the far field, the scattered field takes the form

𝐸* =
𝐸"

,!"#$

)
𝑓 �̂�, ̂𝚤 3D

𝐸"
,!"#%

-
𝑓 �̂�, ̂𝚤 2D

(4.1.3)

where 𝐸" = 𝐸" and 𝑓 �̂�, ̂𝚤 is called the scattering amplitude
function representing the scattered wave in the �̂� direction.
From (1.6.7), we have the incident and scattered power flux density:

𝑆! =
.
/
𝐸! × 𝐻!∗ = 1"

&

/2
̂𝜄, 𝑆* =

.
/
𝐸* × 𝐻*∗ = 1'

&

/2
�̂� (4.1.4)

5



4.1 Cross Sections

We define the differential scattering cross section as

𝜎3 �̂�, ̂𝚤 =
lim
)→5

𝑟/ 6⃑'
6⃑"

3D

lim
-→5

𝜌 6⃑'
6⃑"

2D
= 𝑓 �̂�, ̂𝚤

/
(4.1.5)

The bistatic radar cross section (RCS) is defined as

𝜎7! �̂�, ̂𝚤 = 84𝜋𝜎3 �̂�, ̂𝚤 3D
2𝜋𝜎3 �̂�, ̂𝚤 2D (4.1.6)

In 2D, 𝜎7! is also called echo width.
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4.1 Cross Sections

The bistatic RCS represents the hypothetical area that, when illuminated
by the incident power density and scattering that power isotropically,
would produce the same reflected power at the radar as the actual
target. The RCS is defined to be independent of the distance between the
radar and the target. However, it strongly depends on factors such as
incidence angle, observation angle, polarization, frequency, and the
target’s material and shape.
In particular, the monostatic or backscattering RCS refers to the case
where the radar transmitter and receiver are co-located, measuring the
power reflected directly back toward the source:

𝜎!"#" ̂𝚤 = 𝜎$% − ̂𝜄, ̂𝚤 (4.1.8)
7



4.1 Cross Sections

The scattering cross section, quantifying the amount of incident
power that is scattered by an object in all directions, is defined as

𝜎*89 =
∫:; 𝜎3𝑑Ω = ∫:; 𝑟

/ 6⃑'
6⃑"
𝑑Ω 3D

∫/; 𝜎3𝑑𝜙 = ∫/; 𝜌
6⃑'
6⃑"
𝑑𝜙 2D

(4.1.9)

where 𝑑Ω is the differential solid angle.
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4.2 Cylindrical Waves

9



Introduction

In this chapter, we focus on solving the wave and Helmholtz
equations in cylindrical and spherical coordinates, along with the
corresponding scattering phenomena.
As noted at the end of Section 1.5, in a source-free region, the
scalar Helmholtz equation (1.5.17) applies to all three field
components in Cartesian coordinates. In cylindrical coordinates,
only the z-unit vector remains constant, so (1.5.17) holds for the z-
component alone. In spherical coordinates, since none of the unit
vectors are constant, additional care is required in the analysis,
which is pointed out in Section 4.4.1.
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4.2.1 Cylindrical Wave Solution

As mentioned above, we can simplify the vector Helmholtz
equation to a scalar one for the z component in cylindrical
coordinates:

.
-
𝜕- 𝜌𝜕-𝜓 + .

-&
𝜕</𝜓 + 𝜕=/𝜓 + 𝑘/𝜓 = 0 (4.2.1)

Seperation of variables are used to solve (2.2.1) by assuming
𝜓 = 𝐵 𝜌 Φ 𝜙 𝑍 𝑧 (4.2.2)

Subsituting back to (4.2.1), we get
.
>-

3
3-

𝜌 3>
3-

+ .
?-&

3&@
3<&

+ .
A
3&A
3=&

+ 𝑘/ = 0 (4.2.3)
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4.2.1 Cylindrical Wave Solution

Variable 𝑧 is only found in the thrid term of (4.2.3) alone. Thus,
similar to the rectangular case, we have

3&A
3=&

+ 𝑘=/𝑍 = 0 (4.2.4)

with the elementary solution of
𝑍 = 𝑒±!$(= (4.2.5)

Now let
𝑘-/ = 𝑘/ − 𝑘=/ (4.2.6)

and multiply (4.2.3) with 𝜌/, we get
-
>
3
3-

𝜌 3>
3-

+ .
@
3&@
3<&

+ 𝑘-/𝜌/ = 0 (4.2.7)
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4.2.1 Cylindrical Wave Solution

Similarly, we can separate out theΦ term as
3&@
3<&

+ 𝜈/Φ = 0 (4.2.8)

with the elemenatry solution of
Φ = 𝑒±!C< (4.2.9)

where 𝜈 = 𝑚 is an integer constant if we assume Φ is periodic over
2𝜋. Thus, (4.2.7) can now be simplified as

3&>
3-&

+ .
-
3>
3-
+ 𝑘-/ −

C&

-&
𝐵 = 0 (4.2.10)

(4.2.10) is known as the Bessel equation of order 𝜈.
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4.2.1 Cylindrical Wave Solution

The first solution of (4.2.10) with finite value at 𝜌 = 0 is called the
Bessel function of the first kind

𝐽C 𝑘-𝜌 = ∑DE"5 #. ) $%-//
*+&)

D! DHC !
(4.2.11)

For non-integer 𝜈, we have a second independent solution 𝐽#C 𝑘-𝜌
which is infinite at 𝜌 = 0. If 𝜈 is an integer 𝜈 = 𝑛, then

𝐽#I 𝑘-𝜌 = −1 I𝐽I 𝑘-𝜌 (4.2.12)
A second independent solution called Neumannn function is
constructed by

𝑁I 𝑘-𝜌 = lim
C→I

J* $%- KLM C; #J!* $%-
MNO C;

(4.2.13)
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4.2.1 Cylindrical Wave Solution

The Hankel functions of the first and second kind are conbinations
of (4.2.11) and (4.2.13):

𝐻I
. 𝑘-𝜌 = 𝐽I 𝑘-𝜌 + 𝑖𝑁I 𝑘-𝜌 (4.2.14)

𝐻I
/ 𝑘-𝜌 = 𝐽I 𝑘-𝜌 − 𝑖𝑁I 𝑘-𝜌 (4.2.15)

For 𝑘-𝜌 ≫ 1, the Hankel functions approximate aymptotically as

𝐻I
. 𝑘-𝜌 ≅ /

;$%-
𝑒! $%-#I;//#;/: (4.2.16)

𝐻I
/ 𝑘-𝜌 ≅ /

;$%-
𝑒#! $%-#I;//#;/: (4.2.17)

which behave as an incoming and outgoing travelling waves. 15



4.2.2 Cylindrical Wave Transformation

Consider a z-polarized plane wave propergating in x-direction.

𝐸 = �̂�𝐸"𝑒#!$P = �̂�𝐸"𝑒#!$- KLM < (4.2.18)
Let us expand the exponential term into an infinite sum of
cylincrical waves

𝑒#!$- KLM < = ∑IE#55 𝑎I 𝐽I 𝑘𝜌 𝑒!I< (4.2.19)
To find the coefficients 𝑎I, we need the following identities

∫"
/; 𝑒#! $- KLM <HD< 𝑑𝜙 = 2𝜋𝑖#D𝐽#D −𝑘𝜌 = 2𝜋𝑖#D𝐽D 𝑘𝜌 (4.2.20)

∫"
/; 𝑒! D#I <𝑑𝜙 = 2𝜋𝛿DI (4.2.21)
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4.2.2 Cylindrical Wave Transformation

Multiply (4.2.19) with 𝑒!D< and integrate over 𝜙 from 0 to 2𝜋, we get
𝑎D = 𝑖#D (4.2.22)

Thus, we have the following expansion

𝐸= = 𝐸"𝑒#!$P = 𝐸"𝑒#!$- KLM < = 𝐸" ∑IE#55 𝑖#I 𝐽I 𝑘𝜌 𝑒!I< (4.2.23)
This is called the cylindrical wave transformation which expands a
plane wave to a sum of cylindrical waves.
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4.3 Scattering from PEC 
Cylinders
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Introduction

Consider a perfectly conducting cylinder of radius 𝑎, aligned along
the z-axis and illuminated by a plane wave. Two distinct incident
polarizations are defined with respect to the cylinder’s axis: E-
polarization (transverse magnetic to 𝑧, or TM) and H-polarization
(transverse electric to 𝑧, or TE). In this section, we analyze the TM
case, and TE case is left as exercise.
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4.3 Scattering from PEC Cylinders

Consider a plane wave propagating in x direction. Using the
expansion in (4.2.23), we have the incident field

𝐸! = 𝐸"𝑒#!$P�̂� = �̂�𝐸" ∑IE#55 𝑖#I 𝐽I 𝑘𝜌 𝑒!I< (4.3.1)
Suppose the scattered field takes the form of

𝐸* = �̂�𝐸" ∑IE#55 𝑖#I 𝑎I𝐻I
/ 𝑘𝜌 𝑒!I< (4.3.2)

We use the Hankel function of the second kind to represent
outgoging propagating waves. Applying the boundary condition
𝐸=+ = 0 at 𝜌 = 𝑎, we get

𝐸=+ = 𝐸" ∑IE#55 𝑖#I 𝐽I 𝑘𝑎 + 𝑎I𝐻I
/ 𝑘𝑎 𝑒!I< = 0 (4.3.3)
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4.3 Scattering from PEC Cylinders

Thus, the unknown coefficient is

𝑎I = −𝐽I 𝑘𝑎 /𝐻I
/ 𝑘𝑎 (4.3.4)

Then, scattered field is:

𝐸* = −�̂�𝐸" ∑IE#55 𝑖#I J, $9

Q,
& $9

𝐻I
/ 𝑘𝜌 𝑒!I< (4.3.5)

and the total field is:

𝐸+ = �̂�𝐸" ∑IE#55 𝑖#I Q,
& $9 J, $- #J, $9 Q,

& $-

Q,
& $9

𝑒!I< (4.3.6)
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4.3 Scattering from PEC Cylinders

From (4.3.17), the far scattered field is approximated as

𝐸* ≅ −�̂�𝐸"
/!
;$

,!"#%

-
∑IE#55 J, $9

Q,
& $9

𝑒!I< (4.3.7)

And from (4.1.6), we can compute the echo width:

𝜎7! =
:
$
∑IE#55 J, $9

Q,
& $9

𝑒!I<
/

(4.3.8)

The result in (4.3.8) is often normalized according to 𝜆 as

𝜎7!/𝜆 =
/
;
∑IE#55 J, $9

Q,
& $9

𝑒!I<
/

(4.3.9)
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4.4 Spherical Waves
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4.4.1 Spherical Wave Solution

The application of the vector Helmholtz equation in spherical
coordinates is not straightforward, as none of the unit vectors are
constant throughout space. As a result, the vector Helmholtz
equation cannot be directly reduced to separate scalar Helmholtz
equations for each component.

To illustrate this, consider (3.1.4) ∇ × ∇ × 𝐴 − 𝑘/𝐴 = 𝜇 𝐽 − 𝑖𝜔𝜇𝜖∇𝒱
in spherical coordinates. By assuming that 𝐴 and 𝐽 have only radial
component, that is

𝐴 = 𝐴) �̂�, 𝐽 = 𝐽) �̂� (4.4.1)
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4.4.1 Spherical Wave Solution

Then, the 𝑟, 𝜃, and 𝜙 components of (3.1.4) are given by
.

)& MNO R
𝜕R sin 𝜃 𝜕R + .

)& MNO& R
𝜕</ + 𝑘/ 𝐴) = 𝑖𝜔𝜇𝜖𝜕)𝒱 − 𝜇 𝐽)

(4.4.2)

− .
)
𝜕)𝜕R𝐴) =

!STU
)
𝜕R𝒱 (4.4.3)

− .
) MNO R

𝜕)𝜕R𝐴) =
!STU
) MNO R

𝜕<𝒱 (4.4.4)

We notice that the Lorenz gauge condition (3.1.8) cannot be used to
simplify the (4.4.3-4); instead, we choose

𝜕)𝐴) + 𝑖𝜔𝜇𝜖𝒱 = 0 (4.4.5)
25



4.4.1 Spherical Wave Solution

By doing so, (4.4.3-4) is satisfied and (4.4.2) is rewritten as

𝜕)/ +
.

)& MNO R
𝜕R sin 𝜃 𝜕R + .

)& MNO& R
𝜕</ + 𝑘/ 𝐴) = −𝜇 𝐽) (4.4.6)

Let us introduce the Debye Hertz potential:
𝜋, = 𝐴)/𝑖𝜔𝜇𝜖𝑟 (4.4.7)

Then (4.4.6) is transformed into the scalar Helmholtz equation in
spherical coordinates with ∇/= .

)&
𝜕) 𝑟/𝜕) + .

)& MNO R
𝜕R sin 𝜃 𝜕R +

.
)& MNO& R

𝜕</ + 𝑘/:

∇/ + 𝑘/ 𝜋, = − J$
!SU)

(4.4.8)
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4.4.1 Spherical Wave Solution

By duality, we also have

∇/ + 𝑘/ 𝜋D = − V$
!ST)

(4.4.10)

Once the solutions of (4.4.9-10) are found, the fields are given by

𝐸 = ∇ × ∇ × Π, − 𝑖𝜔𝜇∇ × ΠD − J
!SU

= ∇𝜕) + 𝑘/ Π, − 𝑖𝜔𝜇∇ × ΠD
(4.4.11)

𝐻 = ∇ × ∇ × ΠD + 𝑖𝜔𝜖∇ × Π) −
V
!ST

= ∇𝜕) + 𝑘/ ΠD + 𝑖𝜔𝜇∇ × Π,
(4.4.12)

where Π, = 𝑟𝜋, �̂� = Π, �̂� and ΠD = 𝑟𝜋D�̂� = ΠD�̂�.
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4.4.1 Spherical Wave Solution

In terms of spherical components:
𝐸) = 𝜕)/ + 𝑘/ Π, (4.4.13a)

𝐸R =
.
)
𝜕)𝜕RΠ, −

!ST
MNO R

𝜕<ΠD (4.4.13b)

𝐸< =
.

) MNO R
𝜕)𝜕<Π, + 𝑖𝜔𝜇𝜕RΠD (4.4.13c)

𝐻) = 𝜕)/ + 𝑘/ ΠD (4.4.14a)

𝐻R =
.
)
𝜕)𝜕RΠD + !SU

MNO R
𝜕<Π, (4.4.14b)

𝐻< =
.

) MNO R
𝜕)𝜕<ΠD − 𝑖𝜔𝜖𝜕RΠ, (4.4.14c)
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4.4.1 Spherical Wave Solution

We considered here only the radial electric and magnetic current
sources, where 𝜋, and 𝜋D are directly related to 𝐽) and 𝑀). For
sources with 𝜃 and 𝜙-components, the relations become more
complex. Nonetheless, the general electromagnetic field in
spherical coordinates can still be fully described by the two scalar
functions.
Now consider the scalar Helmholtz equation in spherical
coordinates
1
𝑟/
𝜕) 𝑟/𝜕)𝜓 +

1
𝑟/ sin 𝜃

𝜕R sin 𝜃 𝜕R𝜓 +
1

𝑟/ sin/ 𝜃
𝜕</𝜓 + 𝑘/𝜓 = 0

(4.4.15) 29



4.4.1 Spherical Wave Solution

Using separation of variables, let
𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 Θ 𝜃 Φ 𝜙 (4.4.16)

Plug into (4.4.15), multiply 𝑟/ sin 𝜃 and divide it by𝜓, we get
MNO& R
W

3
3)

𝑟/ 3W
3)

+ MNO R
X

3
3R

sin 𝜃 3X
3R

+ .
@
3&@
3<&

+ 𝑘𝑟 sin 𝜃 / = 0

(4.4.17)
Similar tot the cylindrical case, for theΦ term, we have

3&@
3<&

+ 𝜈/Φ = 0, Φ = 𝑒±!C< (4.4.18)

where 𝜈 is a constant. 30



4.4.1 Spherical Wave Solution

Plug into (4.4.17) and divide it by sin/ 𝜃, we get
.
W
3
3)

𝑟/ 3W
3)

+ .
X MNO R

3
3R

sin 𝜃 3X
3R

− C&

MNO& R
+ 𝑘𝑟 / = 0 (4.4.19)

Introducing the constant
3&@
3<&

+ 𝜈/Φ = 0, Φ = 𝑒±!C< (4.4.18)

where 𝜈 is a constant. Now, let
.

X MNO R
3
3R

sin 𝜃 3X
3R

− C&

MNO& R
= −𝜇/ (4.4.20)

.
W
3
3)

𝑟/ 3W
3)

+ 𝑘𝑟 / = 𝜇/ (4.4.21)
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4.4.1 Spherical Wave Solution

Since Φ is periodic over 2𝜋, we let 𝜈 = 𝑚 an integer value, and for
(4.4.20), we get

.
MNO R

3
3R

sin 𝜃 3X
3R

+ 𝜇/ − D&

MNO& R
Θ = 0 (4.4.22)

Let us consider two cases: the solution is azimuthal symmetric or
non-azimuthal symmetric. If it is azimuthal symmetric, we have
𝑚 = 0 and (4.2.21) is reduced to

.
MNO R

3
3R

sin 𝜃 3X
3R

+ 𝜇/Θ = 0 (4.4.23)

To ensure that all solutions of the equation remain finite at sin 𝜃 =
± 1 , the parameter 𝜇/ must take the specific form 𝜇/ = 𝑛 𝑛 + 1 ,
where 𝑛 is a non-negative integer.
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4.4.1 Spherical Wave Solution

Thus, we arrive at the following equation
.

MNO R
3
3R

sin 𝜃 3X
3R

+ 𝑛 𝑛 + 1 Θ = 0 (4.4.24)

which is known as the Legendre equation, and their solutions are
known as the Legendre polynomials:

𝑃I cos 𝜃 = .
/,I!

3
3KLMR

I
cos/ 𝜃 − 1 I (4.4.25)

The solutions form a complete set in the interval −1 ≤ cos 𝜃 ≤ 1.
The orthogonality relation is

∫#.
. 𝑃I cos 𝜃 𝑃I- cos 𝜃 𝑑cos𝜃 = /

/IH.
𝛿II- (4.4.26)
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4.4.1 Spherical Wave Solution

Hence, if we have a function that lies in 0 ≤ 𝜃 ≤ 𝜋 (−1 ≤ cos 𝜃 ≤ 1),
we can expand it as

𝑓 𝜃 = ∑IE"5 𝑎I𝑃I cos 𝜃 , 0 ≤ 𝜃 ≤ 𝜋 (4.4.27)
where

𝑎I =
/IH.
/ ∫"

; 𝑓 𝜃 𝑃I cos 𝜃 sin 𝜃 𝑑𝜃 (4.4.28)

On the other hand, if the solution is non-azimuthal symmetric, we
have the associated Legendre equation

.
MNO R

3
3R

sin 𝜃 3X
3R

+ 𝑛 𝑛 + 1 − D&

MNO& R
Θ = 0 (4.4.29)
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4.4.1 Spherical Wave Solution

The solutions to (4.4.29) is the associated Legendre polynomials of
the first 𝑃ID cos 𝜃 and second kind 𝑄ID cos 𝜃 . Notice that all the
solutions are necessarily singular at cos 𝜃 = ±1 except for
𝑃ID cos 𝜃 with integer𝑚 and 𝑛.
For positive integer 𝑚 and 𝑛, they are related to the ordinary
Legendre polynomials as

𝑃ID cos 𝜃 = sinD 𝜃 𝑃I
D cos 𝜃 , 𝑚 ≤ 𝑛 (4.4.30)

where 𝑃I
D is the mth derivative with respect to cos 𝜃 of the nth-order

Legendre polynomial.
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4.4.1 Spherical Wave Solution

Now let us consider (4.4.21). Substituting 𝜇/ = 𝑛 𝑛 + 1 , and let

𝑅 = 𝑅I 𝑘𝑟 = ;
/$)

𝐵IH.// 𝑘𝑟 = ;
/$)

𝐵 (4.4.31)

(4.4.21) becomes
3&>
3)&

+ .
)
3>
3)
+ 𝑘/ − IH.//

)&
𝐵 = 0 (4.4.32)

which is the Bessel equation and 𝐵IH.// is the Bessel function of
order 𝑛 + 1/2 . (4.3.31) is known as the spherical Bessel function.
We often use lowercase letter to denote the spherical modification

of the Bessel function, for example, ℎI
(/) 𝑘𝑟 = ;

/$)
𝐻IH.//
(/) 𝑘𝑟 .
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4.4.2 Spherical Wave Transformation

Similar to (4.2.18), consider an x-polarized plane wave propergating
in z-direction:

𝐸 = j𝑥𝐸"𝑒#!$= = j𝑥𝐸"𝑒#!$) KLM R (4.4.33)
Let us expand the exponential term into an infinite sum of spherical
waves. Since (4.4.33) is azimuthal symmetric, we have 𝑚 = 0, and
since we a finite value at the origin, we have

𝑒#!$) KLM R = ∑IE"5 𝑎I𝑗I 𝑘𝑟 𝑃I cos 𝜃 (4.4.34)
To find 𝑎I, let us find use the orthogonality relation (4.4.26)

𝑎I𝑗I 𝑘𝑟 = /IH.
/ ∫#.

. 𝑒#!$) KLM R𝑃I cos 𝜃 𝑑cos𝜃 (4.4.35)
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4.4.2 Spherical Wave Transformation

Using the following identity

∫#.
. 𝑒#!$) KLM R𝑃I cos 𝜃 𝑑cos𝜃 = 2𝑖#I𝑗I 𝑘𝑟 (4.4.36)

we have
𝑎I = 2𝑛 + 1 𝑖#I (4.4.37)

Thus, we have the following expansion

𝐸P = 𝐸"𝑒#!$= = 𝐸"𝑒#!$) KLM R = 𝐸" ∑IE"5 2𝑛 + 1 𝑖#I𝑗I 𝑘𝑟 𝑃I cos 𝜃
(4.2.38)

This is called the spherical wave transformation which expands a
plane wave to a sum of spherical waves. 38



4.5 Scattering from Dielectric 
Spheres
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4.5 Scattering from Dielectric Spheres

The exact solution for the scattering of a plane electromagnetic
wave by an isotropic, homogeneous dielectric sphere of arbitrary
size is commonly known as Mie theory. Consider a dieletric sphere
with radius 𝑎 and permitivity / permeability equal to 𝜖3/𝜇3 placed in
a medium with permitivity / permeability equal to 𝜖 /𝜇.
Let the incident electric field be an x-polarized plane wave
propergating in z-direction. The radial component of incident
electric field can be express as

𝐸)! = 𝐸"𝑒#!$= j𝑥 m 𝑟 = 𝐸" sin 𝜃 cos𝜙 𝑒#!$) KLM R

= .
!$)
𝐸" cos𝜙 𝜕R𝑒#!$) KLM R (4.5.1)
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4.5 Scattering from Dielectric Spheres

Using (4.2.38), the radial component of incident electric field can
be express as

𝐸)! =
1. KLM <
!$)

𝜕R ∑IE"5 2𝑛 + 1 𝑖#I𝑗I 𝑘𝑟 𝑃I cos 𝜃

= !1. KLM <
$) & ∑IE.5 2𝑛 + 1 𝑖#I ̂𝚥I 𝑘𝑟 𝑃I. cos 𝜃 (4.5.2)

where
−𝜕R𝑃I cos 𝜃 = 𝑃I. cos 𝜃 (4.5.3)

and
̂𝚥I 𝑘𝑟 = 𝑘𝑟𝑗I 𝑘𝑟 (4.5.4)

41



4.5 Scattering from Dielectric Spheres

To find the Debye potential of the incident field, (4.4.13a) must be
satisfied:

𝐸)! = 𝜕)/ + 𝑘/ Π,! = 𝜕)/ + 𝑘/ 𝑟𝜋,! (4.5.5)
Let us expand the Debye potential in terms of spherical harmonics

𝜋,! = ∑IE"5 ∑DE"I 𝑗I 𝑘/𝑟 𝑃I. cos 𝜃 𝐴DI cos𝑚𝜙 + 𝐵DI sin𝑚𝜙
(4.5.6)

Substituting (4.5.6) into (4.5.5), we get

𝐸)! = ∑IE"5 ∑DE"I I IH.
$)&

̂𝚥I 𝑘𝑟 𝑃ID cos 𝜃 𝐴DI cos𝑚𝜙 + 𝐵DI sin𝑚𝜙

(4.5.7) 42



4.5 Scattering from Dielectric Spheres

Here, the standard idenitiy is used for the derivation
3&

3)&
𝑟𝑗I 𝑘𝑟 + 𝑘𝑟 /𝑗I 𝑘𝑟 = 𝑛 𝑛 + 1 𝑗I 𝑘𝑟 (4.5.8)

which came directly from (4.4.21). Comparing (4.5.7) and (4.5.2),
we get

o
𝐴DI = 0, 𝑚 ≠ 1
𝐴.I = 𝐸" −𝑖 I#. /IH.

$I IH.
(4.5.9)

and
𝐵DI = 0 (4.5.10)
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4.5 Scattering from Dielectric Spheres

Thus, we have

𝜋!" =
#! $%& '
(")

∑*+,- −𝑖 *., /*0,
* *0,

̂𝚥* 𝑘𝑟 𝑃*, cos 𝜃 (4.5.11)

Following a similar process, we can obtain

𝜋1" = #! &23 '
4(")

∑*+,- −𝑖 *., /*0,
* *0,

̂𝚥* 𝑘𝑟 𝑃*, cos 𝜃 (4.5.12)

To find the scattered field inside and outside the sphere, let us first
specify the boundary conditions to be applied at 𝑟 = 𝑎 :

𝐸5 = 𝐸5
6 , 𝐸' = 𝐸'6 (4.5.13)

𝐻5 = 𝐻5
6 , 𝐻' = 𝐻'6 (4.5.14)

where the superscript d denotes the field inside the sphere.
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4.5 Scattering from Dielectric Spheres

As seen from (4.4.13-14) and (4.5.13-14), the boundary conditions
involve both 𝜋, = 𝜋,! + 𝜋,* and 𝜋D) = 𝜋D! + 𝜋D* , making them
coupled. To simplify the analysis, it is convenient to decouple them
by deriving boundary conditions for 𝜋, and 𝜋D individually. To
achieve this, we consider a linear combination of 𝐸R and 𝐸< in such
a way that all terms involving 𝜋D cancel out: 𝜕R sin 𝜃 𝐸R + 𝜕<𝐸< =
𝜕R sin 𝜃 𝜕R + .

MNO R
𝜕</

.
)
𝜕) 𝑟𝜋, . Using similar technique, at 𝑟 = 𝑎,

we have:
.
)
𝜕) 𝑟𝜋, = .

)
𝜕) 𝑟𝜋,3 , 𝜇𝜋, = 𝜇3𝜋,3 (4.5.15)

.
)
𝜕) 𝑟𝜋D = .

)
𝜕) 𝑟𝜋D3 , 𝜖𝜋D) = 𝜖3𝜋D3 (4.5.16)
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4.5 Scattering from Dielectric Spheres

The boundary conditions ensure that each Debye potential function
outside the sphere couples exclusively to its corresponding Debye
potential inside the sphere. As a result, if the incident field involves
terms with cos𝜙 dependence, both the scattered and internal fields
will exhibit the same cos𝜙 dependence. Likewise, all terms
involving sin𝜙 will retain their sin𝜙 dependence.
Thus, for the scattered field potential, we let

𝜋,* =
#1. KLM <

$&)
∑IE.5 −𝑖 I#. /IH.

I IH.
𝑎I qℎI

/ 𝑘𝑟 𝑃I. cos 𝜃 (4.5.17)

𝜋D* =
#1. MNO <
2$&)

∑IE.5 −𝑖 I#. /IH.
I IH.

𝑏I qℎI
/ 𝑘𝑟 𝑃I. cos 𝜃 (4.5.18)

where qℎI/ 𝑘𝑟 is used to meet the radiation condition.
46



4.5 Scattering from Dielectric Spheres

The total potential outside the sphere is thus written as

𝜋, =
1. KLM <
$&)

∑IE.5 −𝑖 I#. /IH.
I IH.

̂𝚥I 𝑘𝑟 − 𝑎I qℎI/ 𝑘𝑟 𝑃I. cos 𝜃
(4.5.19)

𝜋D = 21. MNO <
$&)

∑IE.5 −𝑖 I#. /IH.
I IH.

̂𝚥I 𝑘𝑟 − 𝑏I qℎI/ 𝑘𝑟 𝑃I. cos 𝜃
(4.5.20)

For the Debye potential inside the sphere, we let

𝜋,3 =
1. KLM <
$/
&)

∑IE.5 −𝑖 I#. /IH.
I IH.

𝑐I ̂𝚥I 𝑘3𝑟 𝑃I. cos 𝜃 (4.5.21)

𝜋D3 = 1. MNO <
2/$/

&)
∑IE.5 −𝑖 I#. /IH.

I IH.
𝑑I ̂𝚥I 𝑘3𝑟 𝑃I. cos 𝜃 (4.5.22)
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4.5 Scattering from Dielectric Spheres

Applying the boundary conditions (4.5.15-16) to (4.5.19-22), we can
find the coefficients

𝑎I =
UT/ [̂, \ [̂,- ] # U/T [̂,- \ [̂, ]

UT/ _̂,
& \ [̂,- ] # U/T _̂,

& - \ [̂, ]
(4.5.23)

𝑏I =
UT/ [̂,- \ [̂, ] # U/T [̂, \ [̂,- ]

UT/ _̂,
& - \ [̂, ] # U/T _̂,

& \ [̂,- ]
(4.5.24)

𝑐I =
! U/T

UT/ _̂,
& \ [̂,- ] # U/T _̂,

& - \ [̂, ]
(4.5.25)

𝑑I =
#! UT/

UT/ _̂,
& - \ [̂, ] # U/T _̂,

& \ [̂,- ]
(4.5.26)

where 𝛼 = 𝑘𝑎 and 𝛽 = 𝑘3𝑎.
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4.5 Scattering from Dielectric Spheres

Let us consider the case in far field. From (4.2.17), when 𝑘𝑟 → ∞,

qℎI
/ 𝑘𝑟 = ;$)

/
𝐽IH.// 𝑘𝑟 ≅ 𝑖IH.𝑒#!$) (4.5.27)

and we get

Π,* = 𝑟𝜋,* ≅ 𝑒#!$) 1. KLM <
$&

∑IE.5 /IH.
I IH.

𝑎I𝑃I. cos 𝜃 (4.5.28)

ΠD* = 𝑟𝜋D* ≅ 𝑒#!$) 1. MNO <
2$&

∑IE.5 /IH.
I IH.

𝑏I𝑃I. cos 𝜃 (4.5.29)

Noting that in the far field
𝜕)Π,* ≅ −𝑖𝑘Π,* , 𝜕)ΠD* ≅ −𝑖𝑘ΠD* (4.5.30)
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4.5 Scattering from Dielectric Spheres

we can thus express
𝐸R ≅ 𝑓R 𝜃, 𝜙 𝑒#!$)/𝑟 (4.5.31)
𝐸< ≅ 𝑓< 𝜃, 𝜙 𝑒#!$)/𝑟 (4.5.32)
𝑓R 𝜃, 𝜙 = −𝑖 cos𝜙 𝑆/ 𝜃 /𝑘 (4.5.33)
𝑓< 𝜃, 𝜙 = 𝑖 sin𝜙 𝑆. 𝜃 /𝑘 (4.5.34)

𝑆. 𝜃 = ∑IE.5 /IH.
I IH.

𝑎I𝜋I cos 𝜃 + 𝑏I𝜏I cos 𝜃 (4.5.35)

𝑆/ 𝜃 = ∑IE.5 /IH.
I IH.

𝑎I𝜏I cos 𝜃 + 𝑏I𝜋I cos 𝜃 (4.5.36)

𝜋I cos 𝜃 = ,̀
0 KLM R
MNOR

, 	 𝜏I cos 𝜃 = 3
3R
𝑃I. cos 𝜃  (4.5.37)
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4.5 Scattering from Dielectric Spheres

By (4.1.5), the differential cross section is

𝜎3 𝜃, 𝜙 = 𝑓 𝜃, 𝜙
/
= cos𝜙 6& R

$

/
+ sin𝜙 60 R

$

/
(4.5.38)

And by (4.1.9), the scattering cross section is

𝜎*89 = ∫:; 𝜎3 𝜃, 𝜙 𝑑Ω = ;
$& ∫"

; 𝑆/ 𝜃 / + 𝑆. 𝜃 / sin 𝜃 𝑑𝜃 (4.5.39)

𝑆. 𝜃 / = ∑IE.5 ∑I-E.
5 /I-H.

I- I-H.
/IH.
I IH.

z
{

𝑎I𝜏I𝑎I-
∗ 𝜏I- + 𝑏I𝜋I𝑏I-

∗ 𝜋I- +
𝑎I𝜏I𝑏I-

∗ 𝜋I- + 𝑏I𝜋I𝑎I-
∗ 𝜏I- (4.5.40)

𝑆/ 𝜃 / = ∑IE.5 ∑I-E.
5 /I-H.

I- I-H.
/IH.
I IH.

z
{

𝑎I𝜋I𝑎I-
∗ 𝜋I- + 𝑏I𝜏I𝑏I-

∗ 𝜏I- +
𝑎I𝜋I𝑏I-

∗ 𝜏I- + 𝑏I𝜏I𝑎I-
∗ 𝜋I- (4.5.41)
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4.5 Scattering from Dielectric Spheres

Using the following orthogonal property

∫"
; 𝜋I𝜋I- + 𝜏I𝜏I- sin 𝜃 𝑑𝜃 = o

0, if 𝑛 ≠ 𝑛a
/

/IH.
IH. !
I#. !

𝑛 𝑛 + 1 , if 𝑛 = 𝑛a

(4.5.42)
we get

𝜎*89 =
/;9
\&
∑IE.5 2𝑛 + 1 𝑎I / + 𝑏I / (4.5.43)
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Problems

1. From (4.2.1) and (4.2.6), plot 𝐸+/𝐸! with 𝑘𝜌 for 𝑘𝑎 = 1.

2. From (4.2.5-6) and Maxwell equations, find the solution of
scattered and total magnetic field.

3. From Problem 2, find the induced surface current.
4. Derive the case of TE scattering from a PEC cylinder.
5. Complete the derivation to obtain (4.5.23-26).
6. Compute the first term of (4.5.23-24) with 𝛽 ≪ 1.
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