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3.1 Radiation in Free Space



3.1.1 Potentials

—

Consider no the magnetic sources, we have V-B=0. Thus, from
vector identity, the magnetic flux density can be expressed as

B=VxA (3.1.1)

where 4 is called the magnetic vector potential. Substitute (3.1.1)
into (1.5.5) with M = 0, we get

Vx (E+iwA) =0 (3.1.2)
from which we can express the electric field intensity as
E=-VV—iwA (3.1.3)

where V is called the electric scalar potential.



3.1.1 Potentials

Substitute (3.1.1) and (3.1.3) into (1.5.6), we get

VXVXA=u]+ wucA — ioueVy (3.1.4)
Also, substitute (3.1.3) into (1.5.7), we get
V2V +iwV-A=—p/e (3.1.5)

Using the vector identity VXVXA= V(V - /T) — V24 , and
rearranging the terms, (3.1.4) and (3.1.5) can be re-expressed as

VZA+ k24 = —puJ + V(V A+ iwueV) (3.1.6)
V2V + k?*V = —p/e — iw(V - A+ iwpeV) (3.1.7)



3.1.1 Potentials

where k2 = w?ue. So far, we have specified the curl of 4, but not its

divergence. To fully determine a vector field (up to a constant), both
curl and divergence must be defined. We can use this freedom to

simplify (3.1.6) and (3.1.7). Specifically, by choosing
V-A+ twueV =0 (3.1.8)

which is known as the Lorenz gauge condition, the equations
become decoupled:
VZA+ k2A=—u]J (3.1.9)
{ — —

V2V+k2V=—§p=—V-] (3.1.10)
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3.1.2 Green Function

Both (3.1.10) and the Catesian components of (3.1.9) satisfy the
Inhomonegnous scalar Helmholtz equation. Here, we are showing
that the solution to the Helmholtz equation with a unit impulse

VG + k*G=-85(Gr—1") (3.1.11)
IS

G(;7") = e "R /AR (3.1.12)
where R = |r — r’|, and

S5(F—7") =0, Pt 7

|, 6G = #)dv =1, 7 inV \9.1-13)

G is known as the Green function solution.



3.1.2 Green Function

From (3.1.13), (3.1.11) can be re-expressed as

(V2G + k%G =0, P T 114
| (V2G + k2G)dv = —1, #' inV (3.1.14)
\
We first consider7 #= r’, or R #= 0. Then
) _i ) e—ikR _ ze—ikR
V26 =~ Op (R O — ) = —k2<— (3.1.15)

Thus, we have V*G + kG =0 when R # 0, which is the first
equationin (3.1.14).



3.1.2 Green Function

Now, for the second equation, let us consider an infinitesimal
spherical volume V,, with its center located at ' and its radius R,
then we have

fVO ViGdv = gﬁSOVG - ds = gﬁSO aRG|RO}? . ds — e~ *Ro(1 + ikR,)
(3.1.16)

and
Jy k?Gdv = e~ Fo(1 + ikRy) — 1 (3.1.17)

Adding (3.1.16) and (3.1.17), we get fVO(VZG + k%2G)dv = —1, which
Is basically the second equationin (3.1.14).



3.1.3 Radiation Solution

Multiply (3.1.11) with u7(F’) and perform integration over a volume
contraining all sources, we get

[y k] @O + kDGCF v’ = (V2 + k) [, u] TG F)dv’

=~ [, ] GHSGF —7dv' = —u ] () (3.1.18)
By comparing (3.1.18) and (3.1.9), we have
A@) = [, k]G ) dv! (3.1.19)

Similarly, from (3.1. 11) and (3.1.10), we have
VE) == [,V JEGFFdv' (3.1.20)
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3.1.3 Radiation Solution

Substituting (3.1.19-20) into (3.1.3) and use wu = kn, we get

EF) = —ikn [, [JG) + =V (V- TG)| 6 G #)av’
(3.1.21)
Substituting (3.1.19) into (3.1.1), we get
HE) =— [, JG) x V677 )dv' (3.1.22)
Define the following operators
oy 1

B()?) = —ik fV’ [X +ﬁ
&(X)=-[,X xVGdv' (3.1.24)

V(7 - )?)] Gdv' (3.1.23)



3.1.3 Radiation Solution

Then, we can express the electric and magnetic field as

E =ng()) (3.1.25)

H = %(J) (3.1.26)
Apply the duality transform (1.1.24), we get

E=-%(M) (3.1.27)

H = g(M)/n (3.1.28)
By superposition:

E=ng(]) - &(M) (3.1.29)

H=g&(J)+g&(M)/m (3.1.30)



3.1.3 Radiation Solution

It Is noted that we can also derive the electric field representation
by Substituting (3.1.19) and (3.1.8) into (3.1.3)

E(F) = —ikn [, (1 +5VV ) NG G % (3.1.31)

Note the distinction between (3.1.21) and (3.1.31). In (3.1.21), one V

acts on 7 (on G), while the other V' acts on #’ (on J(#)). The
resulting singularity is weaker.

In (3.1.31), both V operators act on r, and thus on the Green
function G, leading to a higher-order singularity in the integrand.
This form is typically used for far-field calculations, where
simplifications are possible.



3.1.4 Far-Field Approximation

For far-field approximation, we have r > r', or kR > 1. Thus, the
denominator of Green function solution (3.1.12) is= 4nr, and the
nominator is approximated as

—ikR = o=ike|(F=F)-(FF")|"* & o-ikr(1-77) (3.1.32)

Thus, in far field, the Green function soliution is

e

—lkr

G 7") = Z—e*™T = G,.(r)G,(6, ) (3.1.33)

—lkT‘

where G,.(r) = pp. is the part containing only radial component,

andG,(0,®) = e’ containing only angular component.



3.1.4 Far-Field Approximation

In order to apply (3.1.31), let us first find VGr and VGa:

VG, = 70, (64_;7) e [—ikGr +0 (riz)] (3.1.34)
T6, = 0205(e™ ) + ——0,(e™ ") = 0(2)  (3.1.35)

Thus
VG = G VG, + G,.VG, = —ikGF# + O (riz) ~ —ikGF  (3.1.36)
Then
VV-[JGNG] =V [JGE)V- G| = —ikV [ - J(7)G]
= —ik{# - JG")VG + GV[7 - J()]) (3.1.37)



3.1.4 Far-Field Approximation

To proceed the derivation, let us first calculate the following
Vi = (R0, + 90, + 20,)(Xx + §y + £2) = XX + §9 + 52 = I (3.1.38)
where F is the dyadic notation with

F = F 2% + F, 9% + Fp 2% + Fo 29 +
Fyy99 + Fpy29 + FeyR2 + Fy, 92 + Fy,22

Fex ny Fez]
=|F,x FE, F, (3.1.39)
_sz Fzy Fzz_

and I is the unit dyadic.
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3.1.4 Far-Field Approximation

The juxtaposition of two vectors F = ab is called a dyadic product
with E,,,, = a,,b,,. A component of the dyadic is called a dyad. We

have the following rule for dyadic calculations:
¢-(ab) = (¢-ab
(ab)-¢=a(b- <)
¢ x (ab) = (¢ x )b
(@b) x ¢ = a(b x €
Then, from Vit = V(r#) = V)F + V(@r = A + V@A)r =1
Vi = (I —#)/r (3.1.40)



3.1.4 Far-Field Approximation

The term V[# - /()] in (3.1.37) is, by the vector identity V(a-b) =
&xVxB+5xVx&+(&-V)E+(E-V)&:

_ J=JF JeO+ s 1
Wr - J@)] = [ - T)f = 7y - T =122 = JeZ T e =0(—)

r r r
(3.1.41)

Thus (3.1.37) continues

=—ik{ )[ lkGT+0(r1)]+GX0(i)}

= —k2[J(7) - #]FG + O (7‘_2) (3.1.42)



3.1.4 Far-Field Approximation

Applying the calculations above, (3.1.31) becomes

E = —ikn f G[JG") — J.#]dv’

—lkr

= —ikTI f (/o0 + Jg gb)e‘k’"’" dv’

Atr
—ikr

= —ikr]

e—lkr

= ikn f 7 X [1”* X ](F’)]eikr‘f'dv’
VI

4dtr

f (99 + qbgb) J(E) e T dy’

(3.1.43)
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3.1.4 Far-Field Approximation

From (3.1.22), we can get

~ k2

fv'[r x J()]e™ T dv' = %’A” x E (3.1.44)

For general cases, by applying the duality theorem, we have

il fvr[n(ee + ¢¢) ](7” )+ 7 XM( )]eikf'F,dU’ (3.1.45)

41mTr

E

IIZ

—ikr

H~ _il ¢ ~(hh SAY . M3 — 3 s (3 ik?r! 3.1

H=—ik"—, [n (00 + $$) - M(F") —# X (7 )]e dv' (3.1.46)
It is noted that by expressing k7 in Cartesian coordinates, the far field
can be interpreted as the inverse Fourier transform (up to a constant

factor) of the components of the source distribution.



3.1.5 Stratton-Chu Formulation

From surface equivalence principle (Section 1.6.4B), if all sources
are included in a closed surface §S,, then by placing the surface
currents

( — N
Jo=nXxH
M; =-NnNXE

where 7 is the unit normal vector on §,, we can set the field inside
So to be zero. Thus, using (3.1.29), the electric field outside S, is

E =n2(Js) — &(M,)
= —ikn §, |76 — = (V' - J:)VG|ds' + §, (M, x VG)ds' (3.1.48)

(3.1.47)




3.1.5 Stratton-Chu Formulation

From continuity equation (1.1.3) and the matching condition (1.3.8)
v -75 = —ilwps = —ia)e(ﬁ : E) (3.1.49)

Substitute (3.1.47) and (3.1.49) in (3.1.48) and apply the property
V'G = —VG, we get
E=§ [-ikn(@xH)G+ (A -E)VG+ (AxXE)XVGlds' (3.1.50)
Applying duality transform (1.1.24), we get the magnetic field

7 K~ 0 ~  I7\or AN ’

H=§ |iz(AxE)G+(7-H)VG + (i x H) x VG| ds' (3.1.51)

This is the Stratton-Chu formulation.



3.2 Hertzian Dipole Radiation



3.2 Hertzian Dipole Radiation

Hertzian dipole is the simplest and the most fundamental radiator.
Consider on an infinitesimal line dl, a charge g occilates with an
agular frequency w, then we have the current expressed as J = iwq.
Suppose the line is oriented along the z-axis at the origin, we have

Jdv' = 72dZz'. Thus, from (3.1.31), the electric field is

E(F) = —iknJdl (1 +VV+) 26 (3.2.1)
From (3.1.22), the magnetic field is

H(7) = —7dl 2 X VG (3.2.2)



3.2 Hertzian Dipole Radiation

To express (3.2.1-2) in spherical coordinates, let us calculate the
following first:

VG =V (84_:) = —(ik +2) 67 (3.2.3)
V-(26)=2-VG = — (ik + %) G cos@ (3.2.4)
V[V . (2G)] =G [(—kz + zik + rlz) cosO 1 + (ik + %) sin @ é] (3.2.5)

2XVG=(cos@f—sin@é)xVG=—(ik+%)Gsin9qB (3.2.6)
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3.2 Hertzian Dipole Radiation

Thus, the electric field of an Hertzian dipole can be expressed as

= nidl 1 A 11 . A
E== (1 + ikr) 2cos 0 Gt + iknddl (1 + kzrz) sinf GO
(3.2.7)
Accordingly, the magnetic field can be expressed as
— 1) . ~
H = ikidl (1 + lk—r) sinf G (3.2.8)

Notice that the fields can be devided into dependent parts on
r~1,r7%, and r 3 terms, and we characterize the region with kr « 1
as the near field and kr > 1 as the far field.



3.2 Hertzian Dipole Radiation

For the near-field region r 2 and r 3 terms dominate. Also using the
approximation e " = 1, we get

F oo g dl
E = i ——3 (2cosr + sin 6 6) (3.2.9)
— _Jdl .
H = 22 Sin v, gb (3.2.10)
For the far-field region r ! terms dominate and we get
=~ jknJdlsin6 G (3.2.11)

E
H = ikJdlsin6 G (3.2.12)
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Problems

Ok~ Db =

Complete the intermediate steps in (3.1.15-17).
Verify (3.1.27-28).

Verify (3.1.51).

Complete the intermediate stepsin (3.2.5-8).
Complete the intermediate steps in (3.2.9-12).



