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3.1 Radiation in Free Space
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3.1.1 Potentials 

Consider no the magnetic sources, we have ∇ " 𝐵 = 0. Thus, from
vector identity, the magnetic flux density can be expressed as

𝐵 = ∇ × 𝐴 (3.1.1)

where 𝐴 is called the magnetic vector potential. Substitute (3.1.1)
into (1.5.5) with𝑀 = 0, we get

∇ × 𝐸 + 𝑖𝜔𝐴 = 0 (3.1.2)
from which we can express the electric field intensity as

𝐸 = −∇𝒱 − 𝑖𝜔𝐴 (3.1.3)
where 𝒱 is called the electric scalar potential. 4



3.1.1 Potentials 

Substitute (3.1.1) and (3.1.3) into (1.5.6), we get

∇ × ∇ × 𝐴 = 𝜇 𝐽 + 𝜔!𝜇𝜖𝐴 − 𝑖𝜔𝜇𝜖∇𝒱 (3.1.4)
Also, substitute (3.1.3) into (1.5.7), we get

∇!𝒱 + 𝑖𝜔∇ " 𝐴 = −𝜌/𝜖 (3.1.5)

Using the vector identity ∇ × ∇ × 𝐴 = ∇ ∇ " 𝐴 − ∇!𝐴 , and
rearranging the terms, (3.1.4) and (3.1.5) can be re-expressed as

∇!𝐴 + 𝑘!𝐴 = −𝜇 𝐽 + ∇ ∇ " 𝐴 + 𝑖𝜔𝜇𝜖𝒱 (3.1.6)

∇!𝒱 + 𝑘!𝒱 = −𝜌/𝜖 − 𝑖𝜔 ∇ " 𝐴 + 𝑖𝜔𝜇𝜖𝒱 (3.1.7)
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3.1.1 Potentials 

where 𝑘! = 𝜔!𝜇𝜖. So far, we have specified the curl of 𝐴, but not its
divergence. To fully determine a vector field (up to a constant), both
curl and divergence must be defined. We can use this freedom to
simplify (3.1.6) and (3.1.7). Specifically, by choosing

∇ " 𝐴 + 𝑖𝜔𝜇𝜖𝒱 = 0 (3.1.8)
which is known as the Lorenz gauge condition, the equations
become decoupled:

∇!𝐴 + 𝑘!𝐴 = −𝜇 𝐽 (3.1.9)

∇!𝒱 + 𝑘!𝒱 = − "
#
𝜌 = "

$%#
∇ " 𝐽 (3.1.10)

6



3.1.2 Green Function

Both (3.1.10) and the Catesian components of (3.1.9) satisfy the
inhomonegnous scalar Helmholtz equation. Here, we are showing
that the solution to the Helmholtz equation with a unit impulse

∇!𝐺 + 𝑘!𝐺 = −𝛿 𝑟 − 𝑟& (3.1.11)
is

𝐺 𝑟; 𝑟′ = 𝑒'$()/4𝜋𝑅 (3.1.12)
where 𝑅 = 𝑟 − 𝑟& , and

?
𝛿 𝑟 − 𝑟& = 0, 𝑟 ≠ 𝑟&

∫* 𝛿 𝑟 − 𝑟& 𝑑𝑣 = 1, 𝑟& in 𝑉 (3.1.13)

𝐺 is known as the Green function solution. 7



3.1.2 Green Function

From (3.1.13), (3.1.11) can be re-expressed as

?
∇!𝐺 + 𝑘!𝐺 = 0, 𝑟 ≠ 𝑟&

∫* ∇
!𝐺 + 𝑘!𝐺 𝑑𝑣 = −1, 𝑟& in 𝑉 (3.1.14)

We first consider 𝑟 ≠ 𝑟&, or 𝑅 ≠ 0. Then

∇!𝐺 = "
)!
𝜕) 𝑅!𝜕)

+"#$%

,-)
= −𝑘! +

"#$%

,-)
(3.1.15)

Thus, we have ∇!𝐺 + 𝑘!𝐺 = 0 when 𝑅 ≠ 0, which is the first
equation in (3.1.14).
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3.1.2 Green Function

Now, for the second equation, let us consider an infinitesimal
spherical volume 𝑉. with its center located at 𝑟& and its radius 𝑅.,
then we have

∫*& ∇
!𝐺𝑑𝑣 = ∮/& ∇𝐺 " 𝑑𝑠 = ∮/& 𝜕)𝐺|)&

M𝑅 " 𝑑𝑠 − 𝑒'$()& 1 + 𝑖𝑘𝑅.
(3.1.16)

and

∫*& 𝑘
!𝐺𝑑𝑣 = 𝑒'$()& 1 + 𝑖𝑘𝑅. − 1 (3.1.17)

Adding (3.1.16) and (3.1.17), we get ∫*& ∇
!𝐺 + 𝑘!𝐺 𝑑𝑣 = −1, which

is basically the second equation in (3.1.14). 9



3.1.3 Radiation Solution

Multiply (3.1.11) with 𝜇 𝐽 𝑟′ and perform integration over a volume
contraining all sources, we get

∫*' 𝜇 𝐽 𝑟′ ∇! + 𝑘! 𝐺 𝑟; 𝑟′ 𝑑𝑣& = ∇! + 𝑘! ∫*' 𝜇 𝐽 𝑟′ 𝐺 𝑟; 𝑟′ 𝑑𝑣&

= −∫*' 𝜇 𝐽 𝑟′ 𝛿 𝑟 − 𝑟& 𝑑𝑣& = −𝜇 𝐽 𝑟 (3.1.18)

By comparing (3.1.18) and (3.1.9), we have

𝐴 𝑟 = ∫*' 𝜇 𝐽 𝑟′ 𝐺 𝑟; 𝑟′ 𝑑𝑣& (3.1.19)

Similarly, from (3.1.11) and (3.1.10), we have

𝒱 𝑟 = '"
$%# ∫*' ∇′ " 𝐽 𝑟′ 𝐺 𝑟; 𝑟′ 𝑑𝑣& (3.1.20)
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3.1.3 Radiation Solution

Substituting (3.1.19-20) into (3.1.3) and use𝜔𝜇 = 𝑘𝜂, we get

𝐸 𝑟 = −𝑖𝑘𝜂 ∫*' 𝐽 𝑟′ + "
(!
∇ ∇′ " 𝐽 𝑟′ 𝐺 𝑟; 𝑟′ 𝑑𝑣′

(3.1.21)
Substituting (3.1.19) into (3.1.1), we get

𝐻 𝑟 = −∫*' 𝐽 𝑟′ × ∇𝐺 𝑟; 𝑟′ 𝑑𝑣′ (3.1.22)

Define the following operators

𝔏 �⃑� ≡ −𝑖𝑘 ∫*' �⃑� +
"
(!
∇ ∇′ " �⃑� 𝐺𝑑𝑣′ (3.1.23)

𝔎 �⃑� ≡ −∫*' �⃑� × ∇𝐺𝑑𝑣′ (3.1.24)
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3.1.3 Radiation Solution

Then, we can express the electric and magnetic field as
𝐸 = 𝜂𝔏 𝐽 (3.1.25)

𝐻 = 𝔎 𝐽 (3.1.26)
Apply the duality transform (1.1.24), we get

𝐸 = −𝔎 𝑀 (3.1.27)

𝐻 = 𝔏 𝑀 /𝜂 (3.1.28)
By superposition:

𝐸 = 𝜂𝔏 𝐽 − 𝔎 𝑀 (3.1.29)

𝐻 = 𝔎 𝐽 + 𝔏 𝑀 /𝜂 (3.1.30) 12



3.1.3 Radiation Solution

It is noted that we can also derive the electric field representation
by Substituting (3.1.19) and (3.1.8) into (3.1.3)

𝐸 𝑟 = −𝑖𝑘𝜂 ∫*' 1 + "
(!
∇ ∇ " 𝐽 𝑟′ 𝐺 𝑟; 𝑟′ 𝑑𝑣′ (3.1.31)

Note the distinction between (3.1.21) and (3.1.31). In (3.1.21), one ∇
acts on 𝑟 (on 𝐺), while the other ∇′ acts on 𝑟′ (on 𝐽 𝑟′ ). The
resulting singularity is weaker.
In (3.1.31), both ∇ operators act on 𝑟, and thus on the Green
function 𝐺, leading to a higher-order singularity in the integrand.
This form is typically used for far-field calculations, where
simplifications are possible.
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3.1.4 Far-Field Approximation

For far-field approximation, we have 𝑟 ≫ 𝑟′, or 𝑘𝑅 ≫ 1. Thus, the
denominator of Green function solution (3.1.12) is≅ 4𝜋𝑟, and the
nominator is approximated as

𝑒'$() = 𝑒'$( 1⃑'1⃑' 2 1⃑'1⃑'
(/!

≅ 𝑒'$(1 "'1̂21⃑' (3.1.32)
Thus, in far field, the Green function soliution is

𝐺 𝑟; 𝑟′ ≅ +"#$*

,-1
𝑒$(1̂21⃑' = 𝐺1 𝑟 𝐺4 𝜃, 𝜙 (3.1.33)

where 𝐺1 𝑟 = +"#$*

,-1
is the part containing only radial component,

and𝐺4 𝜃, 𝜙 = 𝑒$(1̂21⃑'containing only angular component.
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3.1.4 Far-Field Approximation

In order to apply (3.1.31), let us first find ∇𝐺1 and ∇𝐺4:

∇𝐺1 = �̂�𝜕1
+"#$*

,-1
= �̂� −𝑖𝑘𝐺1 + 𝑂

"
1!

(3.1.34)

∇𝐺4 = Z𝜃 "
1
𝜕5 𝑒$(1̂21⃑' + M𝜙 "

1 678 5
𝜕9 𝑒$(1̂21⃑' = 𝑂 "

1
(3.1.35)

Thus

∇𝐺 = 𝐺4∇𝐺1 + 𝐺1∇𝐺4 = −𝑖𝑘𝐺�̂� + 𝑂 "
1!

≅ −𝑖𝑘𝐺�̂� (3.1.36) 

Then
∇ ∇ " 𝐽 𝑟′ 𝐺 = ∇ 𝐽 𝑟′ ∇ " 𝐺 ≅ −𝑖𝑘∇ �̂� " 𝐽 𝑟′ 𝐺

= −𝑖𝑘 �̂� " 𝐽 𝑟′ ∇𝐺 + 𝐺∇ �̂� " 𝐽 𝑟′ (3.1.37) 
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3.1.4 Far-Field Approximation

To proceed the derivation, let us first calculate the following
∇𝑟 = [𝑥𝜕: + [𝑦𝜕; + �̂�𝜕< [𝑥𝑥 + [𝑦𝑦 + �̂�𝑧 = [𝑥 [𝑥 + [𝑦 [𝑦 + �̂��̂� = ̿𝐼 (3.1.38)

where a𝐹 is the dyadic notation with
a𝐹 = 𝐹:: [𝑥 [𝑥 + 𝐹;: [𝑦 [𝑥 + 𝐹<:�̂� [𝑥 + 𝐹:; [𝑥 [𝑦 +

𝐹;; [𝑦 [𝑦 + 𝐹<;�̂� [𝑦 + 𝐹:< [𝑥�̂� + 𝐹;< [𝑦�̂� + 𝐹<<�̂��̂�

=
𝐹:: 𝐹:; 𝐹:<
𝐹;: 𝐹;; 𝐹;<
𝐹<: 𝐹<; 𝐹<<

(3.1.39)

and ̿𝐼 is the unit dyadic.
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3.1.4 Far-Field Approximation

The juxtaposition of two vectors a𝐹 = �⃑�𝑏 is called a dyadic product
with 𝐹=> = 𝑎=𝑏>. A component of the dyadic is called a dyad. We
have the following rule for dyadic calculations:

𝑐 " �⃑�𝑏 = 𝑐 " �⃑� 𝑏

�⃑�𝑏 " 𝑐 = �⃑� 𝑏 " 𝑐

𝑐 × �⃑�𝑏 = 𝑐 × �⃑� 𝑏

�⃑�𝑏 × 𝑐 = �⃑� 𝑏 × 𝑐

Then, from ∇𝑟 = ∇ 𝑟�̂� = ∇ 𝑟 �̂� + ∇ �̂� 𝑟 = �̂��̂� + ∇ �̂� 𝑟 = ̿𝐼
∇�̂� = ̿𝐼 − �̂��̂� /𝑟 (3.1.40) 17



3.1.4 Far-Field Approximation

The term ∇ �̂� " 𝐽 𝑟′ in (3.1.37) is, by the vector identity ∇ �⃑� " 𝑏 =
�⃑� × ∇ × 𝑏 + 𝑏 × ∇ × �⃑� + �⃑� " ∇ 𝑏 + 𝑏 " ∇ �⃑�:

∇ �̂� " 𝐽 𝑟′ = 𝐽 𝑟′ " ∇ �̂� = 𝐽 𝑟′ " ∇�̂� =
𝐽 − 𝐽1 �̂�
𝑟

=
𝐽5 Z𝜃 + 𝐽9 M𝜙

𝑟
= 𝑂

1
𝑟

(3.1.41)
Thus (3.1.37) continues

… = −𝑖𝑘 �̂� " 𝐽 𝑟′ −𝑖𝑘𝐺�̂� + 𝑂
1
𝑟!

+ 𝐺 × 𝑂
1
𝑟

= −𝑘! 𝐽 𝑟′ " �̂� �̂�𝐺 + 𝑂 "
1!

(3.1.42) 
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3.1.4 Far-Field Approximation

Applying the calculations above, (3.1.31) becomes

𝐸 ≅ −𝑖𝑘𝜂h
*'
𝐺 𝐽 𝑟′ − 𝐽1 �̂� 𝑑𝑣&

= −𝑖𝑘𝜂
𝑒'$(1

4𝜋𝑟
h
*'

𝐽5 Z𝜃 + 𝐽9 M𝜙 𝑒$(1̂21⃑'𝑑𝑣&

= −𝑖𝑘𝜂
𝑒'$(1

4𝜋𝑟
h
*'

Z𝜃 Z𝜃 + M𝜙 M𝜙 " 𝐽 𝑟′ 𝑒$(1̂21⃑'𝑑𝑣&

= 𝑖𝑘𝜂
𝑒'$(1

4𝜋𝑟
h
*'
�̂� × �̂� × 𝐽 𝑟′ 𝑒$(1̂21⃑'𝑑𝑣&

(3.1.43)
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3.1.4 Far-Field Approximation

From (3.1.22), we can get

𝐻 ≅ −𝑖𝑘 +
"#$*

,-1 ∫*' �̂� × 𝐽 𝑟′ 𝑒$(1̂21⃑'𝑑𝑣& = "
?
�̂� × 𝐸 (3.1.44)

For general cases, by applying the duality theorem, we have

𝐸 ≅ −𝑖𝑘 +
"#$*

,-1 ∫*' 𝜂
Z𝜃 Z𝜃 + M𝜙 M𝜙 " 𝐽 𝑟′ + �̂� ×𝑀 𝑟′ 𝑒$(1̂21⃑'𝑑𝑣& (3.1.45)

𝐻 ≅ −𝑖𝑘 +
"#$*

,-1 ∫*'
"
?
Z𝜃 Z𝜃 + M𝜙 M𝜙 " 𝑀 𝑟′ − �̂� × 𝐽 𝑟′ 𝑒$(1̂21⃑'𝑑𝑣& (3.1.46)

It is noted that by expressing 𝑘�̂� in Cartesian coordinates, the far field
can be interpreted as the inverse Fourier transform (up to a constant
factor) of the components of the source distribution. 20



3.1.5 Stratton-Chu Formulation

From surface equivalence principle (Section 1.6.4B), if all sources
are included in a closed surface 𝑆., then by placing the surface
currents

? 𝐽@ = [𝑛 × 𝐻
𝑀@ = −[𝑛 × 𝐸

(3.1.47)

where [𝑛 is the unit normal vector on 𝑆., we can set the field inside
𝑆. to be zero. Thus, using (3.1.29), the electric field outside 𝑆. is

𝐸 = 𝜂𝔏 𝐽@ − 𝔎 𝑀@

= −𝑖𝑘𝜂 ∮/& 𝐽@𝐺 −
"
(!

∇′ " 𝐽@ ∇𝐺 𝑑𝑠& + ∮/& 𝑀@ × ∇𝐺 𝑑𝑠& (3.1.48)
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3.1.5 Stratton-Chu Formulation

From continuity equation (1.1.3) and the matching condition (1.3.8)

∇& " 𝐽@ = −𝑖𝜔𝜌@ = −𝑖𝜔𝜖 [𝑛 " 𝐸 (3.1.49)

Substitute (3.1.47) and (3.1.49) in (3.1.48) and apply the property
∇&𝐺 = −∇𝐺, we get

𝐸 = ∮/& −𝑖𝑘𝜂 [𝑛 × 𝐻 𝐺 + [𝑛 " 𝐸 ∇&𝐺 + [𝑛 × 𝐸 × ∇′𝐺 𝑑𝑠& (3.1.50)

Applying duality transform (1.1.24), we get the magnetic field

𝐻 = ∮/& 𝑖
(
?
[𝑛 × 𝐸 𝐺 + [𝑛 " 𝐻 ∇&𝐺 + [𝑛 × 𝐻 × ∇′𝐺 𝑑𝑠& (3.1.51)

This is the Stratton-Chu formulation.
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3.2 Hertzian Dipole Radiation
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3.2 Hertzian Dipole Radiation

Hertzian dipole is the simplest and the most fundamental radiator.
Consider on an infinitesimal line 𝑑𝑙, a charge 𝑞 occilates with an
agular frequency𝜔, then we have the current expressed as ℐ = 𝑖𝜔𝑞.
Suppose the line is oriented along the z-axis at the origin, we have
𝐽𝑑𝑣′ = ℐ�̂�𝑑𝑧′. Thus, from (3.1.31), the electric field is

𝐸 𝑟 = −𝑖𝑘𝜂ℐ𝑑𝑙 1 + "
(!
∇ ∇ " �̂�𝐺 (3.2.1)

From (3.1.22), the magnetic field is

𝐻 𝑟 = −ℐ𝑑𝑙 �̂� × ∇𝐺 (3.2.2)
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3.2 Hertzian Dipole Radiation

To express (3.2.1-2) in spherical coordinates, let us calculate the
following first:

∇𝐺 = ∇ +"#$*

,-1
= − 𝑖𝑘 + "

1
𝐺�̂� (3.2.3)

∇ " �̂�𝐺 = �̂� " ∇𝐺 = − 𝑖𝑘 + "
1
𝐺 cos 𝜃 (3.2.4)

∇ ∇ " �̂�𝐺 = 𝐺 −𝑘! + !$(
1
+ "

1!
cos 𝜃 �̂� + 𝑖𝑘 + "

1
sin 𝜃 Z𝜃 (3.2.5)

�̂� × ∇𝐺 = cos 𝜃 �̂� − sin 𝜃 Z𝜃 × ∇𝐺 = − 𝑖𝑘 + "
1
𝐺 sin 𝜃 M𝜙 (3.2.6)
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3.2 Hertzian Dipole Radiation

Thus, the electric field of an Hertzian dipole can be expressed as

𝐸 = ?ℐBC
1

1 + "
$(1

2cos 𝜃 𝐺�̂� + 𝑖𝑘𝜂ℐ𝑑𝑙 1 + "
$(1

− "
(!1!

sin 𝜃 𝐺 Z𝜃
(3.2.7)

Accordingly, the magnetic field can be expressed as

𝐻 = 𝑖𝑘ℐ𝑑𝑙 1 + "
$(1

sin 𝜃 𝐺 M𝜙 (3.2.8)

Notice that the fields can be devided into dependent parts on
𝑟'",𝑟'!, and 𝑟'D terms, and we characterize the region with 𝑘𝑟 ≪ 1
as the near field and 𝑘𝑟 ≫ 1 as the far field.
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3.2 Hertzian Dipole Radiation

For the near-field region 𝑟'! and 𝑟'D terms dominate. Also using the
approximation 𝑒'$(1 ≅ 1, we get

𝐸 ≅ −𝑖 ?ℐBC
,-(1+

2cos�̂� + sin 𝜃 Z𝜃 (3.2.9)

𝐻 ≅ ℐBC
,-1!

sin 𝜃 M𝜙 (3.2.10)

For the far-field region 𝑟'" terms dominate and we get

𝐸 ≅ 𝑖𝑘𝜂ℐ𝑑𝑙 sin 𝜃 𝐺 Z𝜃 (3.2.11)

𝐻 ≅ 𝑖𝑘ℐ𝑑𝑙 sin 𝜃 𝐺 M𝜙 (3.2.12)
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Problems

1. Complete the intermediate steps in (3.1.15-17).
2. Verify (3.1.27-28).
3. Verify (3.1.51).
4. Complete the intermediate steps in (3.2.5-8).
5. Complete the intermediate steps in (3.2.9-12).
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