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2.1 Plane Waves
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2.1.1 Plane Wave Solution

Plane waves are solutions to scalar homogeneous Helmholtz
equation (1.5.17) in rectangular coordninate system with

∇!= 𝜕"! + 𝜕#! + 𝜕$! (2.1.1)

Using separation of variables
𝜓 = 𝑋 𝑥 𝑌 𝑦 𝑍 𝑧 (2.1.2)

And substituting back in to (2.1.1), we get
%
&
'!&
'"!

+ %
(
'!(
'#!

+ %
)
'!)
'$!

+ 𝑘! = 0 (2.1.3)
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2.1.1 Plane Wave Solution

We can now write the following since the functions are independent
of each other

'!*
'+!

+ 𝑘+
!𝛯 = 0 (2.1.4)

where 𝛯 ≔ 𝑋, 𝑌, 𝑍 and 𝜉 ≔ 𝑥, 𝑦, 𝑧. The seperation constants are
related by

𝑘"! + 𝑘#! + 𝑘$! = 𝑘! (2.1.5)

We define the wavevector accordingly

𝑘 = 𝑘2𝑘 = 𝑘" 3𝑥 + 𝑘# 3𝑦 + 𝑘$�̂� (2.1.6)
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2.1.1 Plane Wave Solution

From (2.1.4), we get the elementary plane wave solution

𝜓 = 𝑒±-(/""0/##0/$$) = 𝑒±-/24⃑ (2.1.7)
Transforming the phasor into time domain (with 𝑒-56convention),
we can show that 𝑒-/24⃑ is plane wave propagating in −𝑘 direction
and 𝑒7-/24⃑ is plane wave propagating in+𝑘 direction. We choose the
+ 𝑘 direction our exposition, then electric field can be expressed as

𝐸 = 𝐸8𝜓 = 𝐸8𝑒7-/24⃑ (2.1.8)

where 𝐸8 is a constant vector.
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2.1.1 Plane Wave Solution

Noted that for plane wave solutions the del operator can be replaced by

∇ ⇒ −𝑖𝑘 (2.1.9)

Then from ∇ & 𝐸 = 0we get

∇ & 𝐸!𝑒"#$%'⃑ = −𝑖𝑒"#$%'⃑ 𝑘 & 𝐸! = 0 (2.1.10)

For the magnetic field, we have

𝐻 = #
()
∇ × 𝐸 = *

()
𝑘 × 𝐸 = *

+
-𝑘 × 𝐸 = 𝐻!𝑒"#$%'⃑ (2.1.11)

with 𝐻! =
*
+
-𝑘 × 𝐸! and 𝜂 = 𝜇/𝜖. (2.1.10) and (2.1.11) imply that 𝑘, 𝐸!

and 𝐻! are penedicular to each other, and the direction of the 𝐸! × 𝐻!
aligning with the direction of -𝑘 .
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2.1.1 Plane Wave Solution

Plugging (2.1.8) and (2.1.11) into the source-free Maxwell
equations, we get a general relationship between 𝐸, 𝐻 and 𝑘

𝑘 × 𝐸 = 𝜔𝜇𝐻 (2.1.12)

𝑘 × 𝐻 = −𝜔𝜖𝐸 (2.1.13)

𝑘 = 𝐸 = 0 (2.1.14)

𝑘 = 𝐻 = 0 (2.1.15)

Note that the above equations also apply to 𝐸8, 𝐻8 .
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2.1.2 Angular Spectrum Representation

The angular spectrum representation is a mathematical technique
to describe EM fields as superposition of plane waves.
To expand an EM field, we can select an arbitrary z-axis and
evaulate the following 2D inverse Fourier transform on the plane
perpendicular to the z-axis and acquire the spectral field

ℰ⃑ 𝑘" , 𝑘# , 𝑧 = %
9:!∬7;

; 𝐸 𝑥, 𝑦, 𝑧 𝑒- /""0/## 𝑑𝑥𝑑𝑦 (2.1.16)

where 𝑥, 𝑦 are the transverse position components in Cartesian
coordinates and 𝑘", 𝑘# are the corresponding spatial frequencies in
k domain.
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2.1.2 Angular Spectrum Representation

Then, the EM field can be written as the 2D Fourier transform of the
spectral field

𝐸 𝑥, 𝑦, 𝑧 = ∬7;
; ℰ⃑ 𝑘" , 𝑘# , 𝑧 𝑒7- /""0/## 𝑑𝑘"𝑑𝑘# (2.1.17)

By inserting (2.1.17) into the homogeneous vector Helmholtz
equation ∇! + 𝑘! 𝐸 = 0 and define

𝑘$ ≡
𝑘! − 𝑘"! − 𝑘#!, 𝑘"! + 𝑘#! ≤ 𝑘!

−𝑖 𝑘"! + 𝑘#! − 𝑘!, 𝑘"! + 𝑘#! > 𝑘!
(2.1.18)
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2.1.2 Angular Spectrum Representation

We can get scalar Helmholtz equation for each Cartesian
component of ℰ⃑ (𝜉 ≔ 𝑥, 𝑦, 𝑧)

'!

'$!
+ 𝑘$! ℰ+ = 0 (2.1.19)

Thus, the spectral field ℰ⃑ propagates along the z-axis as

ℰ⃑ 𝑘" , 𝑘# , 𝑧 = ℰ⃑ 𝑘" , 𝑘# , 0 𝑒∓-/$$ (2.1.20)

The minus sign in (2.1.18) when 𝑘"! + 𝑘#! > 𝑘! ensures that the
spectral field remains finite when 𝑧 → ±∞.
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2.1.2 Angular Spectrum Representation

By inserting (2.1.20) into (2.1.17) we finally get the angular spectrum
representation for the electric field

𝐸 𝑥, 𝑦, 𝑧 = ∬7;
; ℰ⃑ 𝑘" , 𝑘# , 0 𝑒7- /""0/##±-/$$ 𝑑𝑘"𝑑𝑘# (2.1.21)

We can ge the magnetic field by (2.1.12). Note that the angular
spectrum representation satisfies the Helmholtz equation but not
the full set of Maxwell equations. To ensure consistency with
Maxwell equations, (2.1.14) and (2.1.15) impose the condition that
the wavevector 𝑘 is perpendicular to the spectral amplitudes.
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2.1.2 Angular Spectrum Representation

A further analysis of the plane wave factor 𝑒7- /""0/##±-/$$ gives
two characteristic solutions

I
𝑒7- /""0/##±-/$$ , 𝑘"! + 𝑘#! ≤ 𝑘!

𝑒7- /""0/## 𝑒7 /$$ , 𝑘"! + 𝑘#! > 𝑘!
(2.1.22)

The first term in (2.1.22) corresponds to the propagating wave and
the second term corresponds to the evanesent wave.
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2.1.3 Polarization

Consider a +z-propagated plane wave

𝐸 = 𝐸" 3𝑥 + 𝐸# 3𝑦 𝑒7-/$ (2.1.23)

where 𝐸" , 𝐸# are complex-valued with the following expression

J
𝐸" = 𝐸" 𝑒-="
𝐸# = 𝐸# 𝑒-=#

(2.1.24)

Note that the amplitudes 𝐸" , 𝐸# and phases 𝛿" , 𝛿# can be
arbitrary. To simplify analysis, we considered three types of
polarizations:
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2.1.3 Polarization

A. Linear Polarization
For linearly polarized field we have

𝛿" − 𝛿# = 𝑛𝜋 (2.1.25)

with 𝑛 ∈ ℤ.
B. Circular Polarization
For circularly polarized field we have

I
𝛿" − 𝛿# =

>:
!

𝐸" = 𝐸#
(2.1.26)
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2.1.3 Polarization

To characterize the direction of rotation, we considered the
following expression with 𝐸8 ∈ ℝ

𝐸?@ = 𝐸8 3𝑥 − 𝑖𝐸8 3𝑦 𝑒7-/$ (2.1.27a)

𝐸A@ = 𝐸8 3𝑥 + 𝑖𝐸8 3𝑦 𝑒7-/$ (2.1.27b)

To illustrate that 𝐸?@ corresponds to the right-hand circular
polarization (RHCP) and 𝐸A@ the left-hand circular polarization
(LHCP), we can transform (2.1.27) back to time domain

𝐸?@ 𝑧, 𝑡 = 𝐸8 cos 𝜔𝑡 − 𝑘𝑧 3𝑥 + sin 𝜔𝑡 − 𝑘𝑧 3𝑦 (2.1.28a)

𝐸A@ 𝑧, 𝑡 = 𝐸8 cos 𝜔𝑡 − 𝑘𝑧 3𝑥 − sin 𝜔𝑡 − 𝑘𝑧 3𝑦 (2.1.28b)
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2.1.3 Polarization

By letting 𝑧 = 0, as 𝑡 progresses, we can show that 𝐸?@ rotates
counterclockwise and 𝐸A@ rotates clockwise on the x-y plane when
seen from the +z axis. Note that the optics community follows the
opposite convention.
C. Elliptical Polarization
Elliptical polarization is the general case that occurs when
conditions (2.1.25) and (2.1.26) are not met. However, a wave that is
neither linearly nor circularly polarized is not necessarily elliptically
polarized. Most natural electromagnetic waves, such as daylight,
are unpolarized.
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2.1.4 Wave Velocities

Consider a plane wave propagating in the z-direction, it’s time-
domain form can be expressed as

𝐸 𝑧, 𝑡 = ℜ 𝐸8 𝑧 𝑒-(567/$) (2.1.29)
The constant phase plane is determined by

𝜔𝑡 − 𝑘𝑧 = 𝐶 (2.1.30)
where 𝐶 is a constant. Take derivative respect to 𝑡 for both sides of
(2.1.30), we get the phase velocity

𝑣B =
'$
'6
= 5

/
= %

CD
(2.1.31)

𝑣B remains constant if 𝜖 and 𝜇 do not vary with frequency, in which
case the medium is termed non-dispersive. 19



2.1.4 Wave Velocities

A simple harmonic field carries no information. Communication
requires modulating a carrier, introducing a frequency spread.
Group velocity is relevant when this spread is narrow.
Consider a narrow-band signal 𝑠 𝑡 modulated on a high frequency
𝑒-5%6. We are analyzing the propagation of the packet 𝑠 𝑡 𝑒-5%6. Let
the Fourier transform of 𝑠 𝑡 be 𝑆 𝜔 , then the Fourier transform of
𝑠 𝑡 𝑒-5%6 will be 𝑆 𝜔 − 𝜔8 . Suppose the signal went through a
distance 𝑟 and was received by a receiver, then the field at the
receiver can be expressed as

𝑆4 𝜔, 𝑘 = 𝑆 𝜔 − 𝜔8 𝑒7-/ 5 4 (2.1.32)
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2.1.4 Wave Velocities

Note that the wavenumber 𝑘 is also a function of 𝜔. For narrow-
band cases, we can expand 𝑘 with

𝑘 ≈ 𝑘 𝜔8 + '/
'5
|5E5% 𝜔 − 𝜔8 = 𝑘8 + 𝑘′ 𝜔 − 𝜔8 (2.1.33)

Plug (2.1.33) into (2.1.32), we have
𝑆4 𝜔, 𝑘 = 𝑆 𝜔 − 𝜔8 𝑒7-/%4𝑒7-/

& 575% 4 (2.1.34)
Inverse Fourier transform (2.1.34) we get the time-domain signal

𝑠4 𝑡, 𝑘 = 𝔉7% 𝑆4 𝜔, 𝑘 = 𝑠 𝑡 − 𝑘F𝑟 𝑒- 5%67/%4 (2.1.35)
which means that the wave packet travels with the group velocity of

𝑣G =
%
/&
= '5

'/
(2.1.36)
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2.1.4 Wave Velocities

Lastly, let us find the relation between 𝑣B and 𝑣G

𝑣G =
%

'//'5
= %

' '
()

/'5
= I)

%7'
()

*()
*'

(2.1.37)

Three possible cases are characterized:

i.
'I)
'5

= 0 and 𝑣G = 𝑣B: no dispersion

ii.
'I)
'5

< 0 and 𝑣G < 𝑣B: normal dispersion

iii.
'I)
'5

> 0 and 𝑣G > 𝑣B: anomalous dispersion
22
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2.2 Plane Wave Propagation
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2.2.1 Propagation in Unbounded Medium

If the medium is lossless, we have a real wavenumber 𝑘 = 𝜔 𝜇𝜖.
However, the unit vector 2𝑘 can be complex. Starting from 2𝑘 = 2𝑘 = 1,
assume that

2𝑘 = 𝑘F − 𝑖𝑘′′ (2.2.1)
we have

2𝑘 = 2𝑘 = 𝑘F! − 𝑘FF! − 2𝑖𝑘F = 𝑘FF = 1 (2.2.2)

where 𝑘F = 𝑘F and 𝑘FF = 𝑘FF. (2.2.2) implies that
𝑘F! − 𝑘FF! = 1 (2.2.3a)

𝑘F = 𝑘FF = 0 (2.2.3b) 24



2.2.1 Propagation in Unbounded Medium

If
𝑘F = 1, 𝑘FF = 0 (2.2.4)

Then (2.2.3b) is also satisfied. In this case, we have a uniform plane
wave solution.

For general cases when 𝑘F ≠ 0 and 𝑘FF ≠ 0, the solution (2.1.8)
becomes

𝐸 = 𝐸8𝑒7-/24⃑ = 𝐸8𝑒7/
&&24⃑ 𝑒7-/&24⃑ (2.2.5)

denoting a non-uniform plane wave with the constant phase plane
and the constant amplitude plane perpendicular to each other.
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2.2.1 Propagation in Unbounded Medium

For lossy medium, the wavenumber 𝑘 = 𝜔 𝜇𝜖J = 𝛽 − 𝑖𝛼 is a
complex number as in (1.5.16). For cases when 2𝑘 is real, the
solution (2.1.8) takes the form of

𝐸 = 𝐸8𝑒7-/24⃑ = 𝐸8𝑒7K
L/24⃑ 𝑒7-ML/24⃑ (2.2.6)

denoting an evanecent plane wave with its amplitude decreasing in
the propagation direction.
Using the expression (1.5.10) 𝜖J = 𝜖F − 𝑖 𝜖FF , we can express
propagation constant 𝛽 and attenuation constant 𝛼 as
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2.2.1 Propagation in Unbounded Medium

𝛽 = 𝜔 CD&

!
1 + D&&

D&

!
+ 1

%/!

(2.2.7)

𝛼 = 𝜔 CD&

!
1 + D&&

D&

!
− 1

%/!

(2.2.8)

The intrinsic impedance and phase velocity are

𝜂J =
C
D+
= C

D&
1 − 𝑖 D

&F
D&

7%/!
(2.2.9)

𝑣B =
5
M
= CD&

!
1 + D&&

D&

!
− 1

7%/!

(2.2.10)
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2.2.2 Oblique Incidence on an Interface

In this section, we examine the behavior of a plane wave incident on
a planar dielectric boundary, deriving the general case for oblique
incidence.
Special cases can be easily derived from the following analysis:
i. For cases of normal incidence, we simply set the incident angle

𝜃- = 0.
ii. When the incident medium is a PEC, the analysis simplifies by

setting 𝜖! = 𝜖J → 𝑖∞ and 𝜂! → 0.
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2.2.2 Oblique Incidence on an Interface

29

Let the incident electric field amplitude be 𝐸- , and define the
reflection and transmission coefficients as

Γ = 𝐸4/𝐸- (2.2.11)
T = 𝐸6/𝐸- (2.2.12) 

where 𝐸4 is the amplitude of the reflected wave and 𝐸6 is the
amplitude of the transmitted wave.
We consider two cases: perpendicular and parallel polarization.
Since any arbitrarily polarized plane wave can be represented as a
combination of the two, analyzing them separately allows for a
comprehensive understanding of interactions with the boundaries.



2.2.2 Oblique Incidence on an Interface
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2.2.2.1 Perpendicular Polarization

Perpendicular polarization occurs when the electric field is normal
to the plane of incidence, with the magnetic field lying within the
plane.
From (2.1.8) and (2.1.11) we can express the incident field as

𝐸- = 𝐸-𝑒7-/,24⃑ �̂� = 𝐸-𝑒7-/- " NOP Q,0# PRS Q, �̂� (2.2.13a)

𝐻- =
%
T-
2𝑘- × 𝐸-=

%
T-

cos 𝜃- 3𝑥 + sin 𝜃- 3𝑦 × 𝐸-𝑒7-/- " NOP Q,0# PRS Q, �̂�

= U,
T-
𝑒7-/- " NOP Q,0# PRS Q, sin 𝜃- 3𝑥 − cos 𝜃- 3𝑦 (2.2.13b)
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2.2.2.1 Perpendicular Polarization

The reflected and transmitted fields can be written accordingly
𝐸4 = ΓV𝐸-𝑒7-/- 7" NOP Q.0# PRS Q. �̂� (2.2.14a)

𝐻4 =
W/U,
T-

𝑒7-/- 7" NOP Q,0# PRS Q, sin 𝜃- 3𝑥 + cos 𝜃- 3𝑦 (2.2.14b)

𝐸6 = TV𝐸-𝑒7-/! " NOP Q00# PRS Q0 �̂� (2.2.15a)

𝐻6 =
X/U,
T!

𝑒7-/! " NOP Q00# PRS Q0 sin 𝜃6 3𝑥 − cos 𝜃6 3𝑦 (2.2.15b)

Applying the following matching conditions:

𝐸- + 𝐸4 |YZS, "E8 = 𝐸6 |YZS, "E8 (2.2.16a)

𝐻- +𝐻4 |YZS, "E8 = 𝐻6 |YZS, "E8 (2.2.16b)
32



2.2.2.1 Perpendicular Polarization

we get

𝑒7-/-# PRS Q, + ΓV𝑒7-/-# PRS Q. = TV𝑒7-/!# PRS Q0 (2.2.17a)
%
T-

−cos 𝜃- 𝑒7-/-# PRS Q, + ΓV cos 𝜃4 𝑒7-/-# PRS Q.

= 7%
T!
TV cos 𝜃6 𝑒7-/!# PRS Q0 (2.2.17b)

Since (2.2.17) holds for all values of 𝑦 , the phase matching
condition, also known as the Snell’s law, is satisfied

𝑘% sin 𝜃- = 𝑘% sin 𝜃4 = 𝑘! sin 𝜃6 (2.2.18)
For the relection angle, we have 𝜃- = 𝜃4.
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2.2.2.1 Perpendicular Polarization

By (2.2.18), (2.2.17) is further reduced to
1 + ΓV = TV (2.2.19a)

NOP Q,
T-

−1 + ΓV = 7 NOP Q0
T!

TV (2.2.19b)

Solving (2.2.19), we get

ΓV =
T!/ NOP Q07T-/ NOP Q,
T!/ NOP Q00T-/ NOP Q,

(2.2.20a)

TV =
!T!/ NOP Q0

T!/ NOP Q00T-/ NOP Q,
(2.2.20b)

Note that 𝜂%/ cos 𝜃- and 𝜂!/ cos 𝜃6 represent the ratio of the
tangential electric field to the tangential magnetic field.
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2.2.2.2 Parallel Polarization

Parallel polarization occurs when the electric field lies in the plane
of incidence. Similarly, the fields can be expressed as

𝐸- = 𝐸-𝑒7-/- " NOP Q,0# PRS Q, −sin 𝜃- 3𝑥 + cos 𝜃- 3𝑦 (2.2.21a)

𝐻- =
U,
T-
𝑒7-/- " NOP Q,0# PRS Q, �̂� (2.2.21b)

𝐸4 = Γ∥𝐸-𝑒7-/- 7" NOP Q.0# PRS Q. sin 𝜃- 3𝑥 + cos 𝜃- 3𝑦 (2.2.22a)

𝐻4 = − W∥U,
T-
𝑒7-/- 7" NOP Q,0# PRS Q, �̂� (2.2.22b)

𝐸6 = T∥𝐸-𝑒7-/! " NOP Q00# PRS Q0 −sin 𝜃- 3𝑥 + cos 𝜃- 3𝑦 (2.2.23a)

𝐻6 =
X∥U,
T!

𝑒7-/! " NOP Q00# PRS Q0 �̂� (2.2.23b)
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2.2.2.2 Parallel Polarization

Applying the matching conditions (2.2.16) and phase matching
relation (2.2.18), we get

Γ∥ =
T! NOP Q07T- NOP Q,
T! NOP Q00T- NOP Q,

(2.2.24a)

T∥ =
!T! NOP Q0

T! NOP Q00T- NOP Q,

NOP Q,
NOP Q0

(2.2.24b)

The factor NOP Q,
NOP Q0

in (2.2.24b) comes from the definition of T∥being

the ratio of the total electric field T∥ =
U0
U,
= U#0 / NOP Q0

U#,/ NOP Q,
= U#0

U#,

NOP Q,
NOP Q0

.
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2.2.2.3 Critical Angle

Consider the case when 𝜃6 = 90°. From (2.2.18), we have
𝜖%𝜇% sin 𝜃J = 𝜖!𝜇! (2.2.25) 

or,

𝜃J = sin7% 𝜖!𝜇!/𝜖%𝜇% (2.2.26)

where 𝜃J is called the critical angle. When 𝜃- ≥ 𝜃J, total reflection
occurs. Take perpendicular polarization for example, examining
(2.2.15a), we can get the transmitted field

𝐸6 = TV𝐸-𝑒7-/! " NOP Q00# PRS Q0 = TV𝐸-𝑒7-/-# PRS Q,𝑒7-/!" NOP Q0
(2.2.27)
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2.2.2.3 Critical Angle

where

cos 𝜃6 = 1 − sin! 𝜃6 = 1 − D-C-
D!C!

sin! 𝜃- (2.2.28)

When 𝜃- > 𝜃J = sin7% 𝜖!𝜇!/𝜖%𝜇% , (2.2.28) is purely imaginary,
and can be expressed as

cos 𝜃6 = cos :
!
+ 𝑖𝛿6 = −𝑖 sinh 𝛿6 = −𝑖 D-C-

D!C!
sin! 𝜃- − 1

(2.2.29)
with sinh 𝛿6 > 0. then (2.2.27) becomes

𝐸6 = TV𝐸-𝑒7 PRS] =0/!"𝑒7-/-# PRS Q, (2.2.30)
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2.2.2.3 Critical Angle

This is clearly a non-uniform plane wave solution as shown in
(2.2.5). The transmitted wave propagates along the planar
boundary, and decays exponentially in the direction perpendicular
to the planar boundary.
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2.2.2.4 Brewster’s Angle

Zero reflection occurs when (2.2.20a) or (2.2.24a) equal to zero. For
perpendicular polarization, we need 𝜂!/ cos 𝜃6 = 𝜂%/ cos 𝜃-, or

1 − sin! 𝜃- = C-D!
C!D-

1 − sin! 𝜃6 (2.2.31)

From (2.2.18), we have sin! 𝜃6 =
C-D-
C!D!

sin! 𝜃-. Thus,

sin 𝜃- =
D!/D-7C!/C-
C-/C!7C!/C-

(2.2.32)

For 𝜃- to have real solution, it is required that D!/D-7C!/C-
C-/C!7C!/C-

≤ 1, or

𝜖!/𝜖% ≥ 𝜇%/𝜇! (2.2.33) 40



2.2.2.4 Brewster’s Angle

However, for most non-magnetic materials (𝜇% = 𝜇! = 𝜇8 ), the
denominator of (2.2.32) is zero, which implies that there exists no
zero reflection for perpendicular polarizations.
For the parallel polarization we need 𝜂! cos 𝜃6 = 𝜂% cos 𝜃-, or

1 − sin! 𝜃- = C!D-
C-D!

1 − sin! 𝜃6 (2.2.34)

Similar to previous analysis, from (2.2.18) we have

sin 𝜃- =
D!/D-7C!/C-
D!/D-7D-/D!

(2.2.35)

For 𝜃- to have real solution, it is required that
𝜖%/𝜖! ≤ 𝜇!/𝜇% (2.2.36)
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2.2.2.4 Brewster’s Angle

For most non-magnetic materials, (2.2.35) reduces to

𝜃^ = sin7% D!
D-0D!

= cos7% D-
D-0D!

= tan7% D!
D-

(2.2.37)

where 𝜃^ is called the Brewster’s angle.

It is noted that since 𝜖! sin 𝜃6 = 𝜖% sin 𝜃^ =
D-D!
D-0D!

, we have

𝜃6 = sin7% D-
D-0D!

= cos7% D!
D-0D!

= tan7% D-
D!

(2.2.38)

Thus,
𝜃^ + 𝜃6 =

:
!

(2.2.39)
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2.2.2.4 Brewster’s Angle

The electric field induces electron oscillations along the direction of
𝐸6 when the EM wave is transmitted. These oscillations emit a
reflected wave back into the first medium. However, since no
radiation occurs along the direction of 𝐸6 , there is no reflected
wave when the reflected and transmitted waves are
perpendicular—as at Brewster’s angle.

43

𝜖& + 𝜖'

𝜖&

𝜖'

𝜃)

𝜃%



2.3 Waveguide Transmission
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2.3.1 Solution to Waveguide Problems

Waveguides are transmission structures that guide electromagnetic
waves and support higher-order modes beyond TEM waves.
Assume the waveguide is extended in the z-direction, A general
approach to solving waveguide problems is to first determine the z-
components of the fields and then derive the corresponding
transverse components. Assume the fields have the form of

𝐸 𝑥, 𝑦, 𝑧 = 𝐸8 𝑥, 𝑦 𝑒7-/$$ (2.3.1a)

𝐻 𝑥, 𝑦, 𝑧 = 𝐻8 𝑥, 𝑦 𝑒7-/$$ (2.3.1b)
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2.3.1 Solution to Waveguide Problems

By separating the field into its transverse and longitudidal
components 𝐸8 = 𝐸V8 + 𝐸$8�̂� (𝐻8 = 𝐻V8�̂� + 𝐻$8�̂� ), and put (2.3.1) into
the source-free curl-set Maxwell equations with 𝜕$ → −𝑖𝑘$, we can
express the transverse components in terms of 𝐸$8 and𝐻$8 as

𝐸V8 = − -
/+!

𝑘$∇V𝐸$8 −𝜔𝜇�̂� ×∇V𝐻$8 (2.3.2a)

𝐻V8 = − -
/+!

𝑘$∇V𝐻$8 +𝜔𝜖�̂� ×∇V𝐸$8 (2.3.2b)

with

𝑘J! = 𝑘! − 𝑘$! (2.3.3)
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2.3.1 Solution to Waveguide Problems

(2.3.2) can be simplified under specific assumptions about the field
components. If 𝐻$8 = 0 while 𝐸$8 ≠ 0, the resulting mode is called
a transverse magnetic (TM) mode. Conversely, if the 𝐸$8 = 0 and
𝐻$8 ≠ 0 , the mode is known as a transverse electric (TE) mode.
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TM Mode TE Mode

𝐻𝑧0 = 0 (2.3.4a) 𝐸𝑧0 = 0 (2.3.5a)

𝐸⊥0 = − 𝑖
𝑘𝑐2
𝑘𝑧∇⊥𝐸𝑧0 (2.3.4b) 𝐸⊥0 =

𝑖
𝑘𝑐2
𝜔𝜇�̂� × ∇⊥𝐻𝑧0 (2.3.5b)

𝐻⊥0 = − 𝑖
𝑘𝑐2
𝜔𝜖�̂� × ∇⊥𝐸𝑧0 (2.3.4c) 𝐻⊥0 = − 𝑖

𝑘𝑐2
𝑘𝑧∇⊥𝐻𝑧0 (2.3.5c)



2.3.1 Solution to Waveguide Problems

Note that the fields also satisfy the homogeneous vector Helmholtz
equation ∇! + 𝑘! �⃑� = 0. Put (2.3.1) into the Helmholtz equation
and separate the Laplacian operator into the longitudinal part and
the transverse part. Extracting the z-components, we get

∇V! + 𝑘J! 𝐸$8 = 0 (2.3.6a)

∇V! + 𝑘J! 𝐻$8 = 0 (2.3.6b)

From (2.3.6), the longitudinal fields can be determined based on
the specific boundary conditions, after which the transverse fields
can be obtained using (2.3.2).
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2.3.1 Solution to Waveguide Problems

If the waveguide is composed of a single connected (tube-like) PEC,
the boundary condition is

t3𝑛 × 𝐸 d = 0 (2.3.7)

where 𝑊 denotes the surface of the wavegude, 3𝑛 is the normal unit
vector pointing outwards, and �̂� = �̂� × 3𝑛. By expending 𝐸V8 = 𝐸e8�̂� +
𝐸>8 3𝑛 , (2.3.7) requires that both the the tangential components 𝐸e8

and 𝐸$8 vanish on the PEC.
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2.3.1 Solution to Waveguide Problems

For TM waves, we can impose the Dirichlet boundary condition
|𝐸$8 d = 0 (TM waves) (2.3.8)

For TE waves, From (2.3.5b), considering the 𝜏-component, we have

𝐸e8 =
-
/+!
𝜔𝜇𝜕>𝐻$8 = 0

which implies the Neumann boundary condition
𝜕>𝐻$8 = 0 (TE waves) (2.3.9)

imposing the boundary conditions yields solutions only for specific
discrete values of 𝑘J , known as eigenvalues. Each eigenvalue
characterizes a distinct waveguide mode. 50



2.3.1 Solution to Waveguide Problems

Let
𝑘J = 𝜔J 𝜇𝜖 (2.3.10)

and from (2.3.3), we can get

𝑘$ = 𝑘J 𝑓/𝑓J ! − 1 = 𝑘 1 − 𝑓J/𝑓 ! (2.3.11)
where

𝑓J = 𝜔J/2𝜋 = 𝑘J/ 2𝜋 𝜇𝜖 (2.3.12)
is called the cut-off frequency. From (2.3.1), a propagating solution
requires 𝑘$ to have a non-zero real part. This condition is satisfied only
when 𝑓 > 𝑓J. Therefore, a waveguide functions as a high-pass filter.
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2.3.1 Solution to Waveguide Problems

Generally, 𝑘$= 𝛽 − 𝑖𝛼 . If the waveguide is lossless, then 𝛽 = 𝑘$ .
Consider the case when 𝑓 > 𝑓𝑐, for a lossless waveguide we can
calculate the guide wavelength in z-direction by

𝜆$ = 2𝜋/𝛽 = 𝜆/ 1 − 𝑓J/𝑓 ! > 𝜆 (2.3.13)
where 𝜆 = 2𝜋/𝑘 is the plane wave wavelength a in an unbounded
region with the same material as in the waveguide.
We then calculate the phase velocity

𝑣B = 𝜔/𝛽 = 𝑣/ 1 − 𝑓J/𝑓 ! > 𝑣 (2.3.14)

and the group velocity
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2.3.1 Solution to Waveguide Problems

𝑣G =
𝑑𝜔
𝑑𝛽

=
1

𝑑𝛽/𝑑𝜔
=

1

𝑑 𝜔/𝑣 1 − 𝜔J/𝜔 ! /𝑑𝜔

=
𝑣

𝑑 𝜔! −𝜔J!/𝑑𝜔
=

𝑣

𝜔/ 𝜔! −𝜔J!
= 𝑣 1 − 𝑓J/𝑓 ! < 𝑣

(2.3.15)

From (2.3.14), the phase velocity in a waveguide is always higher than
in an unbounded medium and varies with frequency, indicating
dispersion. Its relation to group velocity is given by:

𝑣B𝑣G = 𝑣! (2.3.16)
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2.3.2 Characteristic of Waveguide Modes

In this section, we introduce the orthogonality properties of
waveguide modes. We establish the modal orthogonality between
different waveguide modes in the sense of linear vector space
theory. This involves showing that distinct modes form an
orthogonal set of solutions with respect to an inner product, which
we prove using Green’s identities.
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2.3.2.1 Green’s Identities 

A. Green’s first identity
Consider two scalar field 𝑓 and 𝑔. From divergence theorem, we
can get

∫g ∇ = 𝑔∇𝑓 𝑑𝑣 = ∮h 𝑔∇𝑓 = 𝑑𝑠 (2.3.17)

Expand the integrand on the RHS we get the Green’s first identity

∫g 𝑔∇!𝑓 + ∇𝑔 = ∇𝑓 𝑑𝑣 = ∮h 𝑔∇𝑓 = 𝑑𝑠 = ∮h 𝑔𝜕>𝑓𝑑𝑠 (2.3.18)

In 2D we have

∫h 𝑔∇V
!𝑓 + ∇V𝑔 = ∇V𝑓 𝑑𝑠 = ∮A 𝑔∇V𝑓 = 𝑑𝑙 = ∮A 𝑔𝜕>𝑓𝑑𝑙 (2.3.19)
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2.3.2.1 Green’s Identities 

B. Green’s second identity
Interchange 𝑔 and 𝑓 in (2.3.8) and substract the two, we get the
Green’s second identity

}
g
𝑔∇!𝑓 − 𝑔∇!𝑓 𝑑𝑣 = ~

h
𝑔∇𝑓 − 𝑓∇𝑔 = 𝑑𝑠 = ~

h
𝑔𝜕>𝑓 − 𝑓𝜕>𝑔 𝑑𝑠

(2.3.20)
In 2D we have

}
h
𝑔∇V!𝑓 − 𝑔∇V!𝑓 𝑑𝑠 = ~

A
𝑔∇V𝑓 − 𝑓∇V𝑔 = 𝑑𝑙 = ~

A
𝑔𝜕>𝑓 − 𝑓𝜕>𝑔 𝑑𝑙

(2.3.21)
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2.3.2.1 Green’s Identities 

There are other useful identities derived from Green’s identity. For
example, interchange 𝑔 and 𝑓 in (2.3.8) and add the two, we get

}
g
∇𝑔 = ∇𝑓𝑑𝑣 =

1
2
~
h
𝑔𝜕>𝑓 + 𝑓𝜕>𝑔 𝑑𝑠 − }

g
𝑓∇!𝑔 + 𝑔∇!𝑓 𝑑𝑣

(2.3.22)
In 2D we have

}
h
∇V𝑔 = ∇V𝑓𝑑𝑠 =

1
2
~
A
𝑔𝜕>𝑓 + 𝑓𝜕>𝑔 𝑑𝑙 − }

h
𝑓∇V!𝑔 + 𝑔∇V!𝑓 𝑑𝑠

(2.3.23)
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2.3.2.2 Modal Orthogonality

From (2.3.6), we see that waveguide problems reduce to two-
dimensional eigenfunction problems, requiring analysis only over
the waveguide cross-section. Let us represent the solution of either
𝐸$8 or𝐻$8 as a doubly infinite set of eigenfunctions

𝜓Bi , 𝑝, 𝑞 ∈ ℕ (2.3.24)
which satisfies the Helmholtz equation

∇V! + 𝑘Bi! 𝜓Bi = 0 (2.3.25)
and either the Dirichlet or the Neumann boundary condition

𝜓Bi = 0 (2.3.26a)
𝜕>𝜓Bi = 0 (2.3.26b)
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2.3.2.2 Modal Orthogonality

First let us consider two distinct eigenfunction 𝜓Bi and 𝜓B&i&. Plug
them into (2.3.25) and substract the two, we get

𝜓B&i&∇V!𝜓Bi − 𝜓Bi∇V!𝜓B&i& = 𝑘B&i&
! − 𝑘Bi! 𝜓Bi𝜓B&i& (2.3.27)

Applying (2.3.21) we have

∮A 𝜓B&i&𝜕>𝜓Bi − 𝜓Bi𝜕>𝜓B&i& 𝑑𝑙 = ∫h 𝑘B&i&
! − 𝑘Bi! 𝜓Bi𝜓B&i& 𝑑𝑠

(2.3.28)

Since 𝜓Bi and 𝜓B&i& satisfy either (2.3.26a) or (2.3.26b), the LHS of
(2.3.28) vanishes.
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2.3.2.2 Modal Orthogonality

For 𝑘,!-!
. ≠ 𝑘,-. (non-degenerate distinct modes), we have the

orthogonality relation
∫/𝜓,-𝜓,!-!𝑑𝑠 = 0 (2.3.29)

Similarly, using (2.3.23), we have

∫/ ∇0𝜓,- & ∇0𝜓,!-!𝑑𝑠 = 0 (2.3.30)

Now, let us consider three cases when calculating ∫/𝐸0
! × 𝐻0! & 𝑑𝑠

i. Both𝜓,- and𝜓,!-! are TMmodes
ii. 𝜓,- is TMmode and𝜓,!-! is TE mode

iii. Both𝜓,- and𝜓,!-! are TEmodes
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2.3.2.2 Modal Orthogonality

From (2.3.4-5), we will encounter the following integrands

∇V𝜓Bi × �̂� × ∇V𝜓B&i& (2.3.31a)

∇V𝜓Bi × ∇V𝜓B&i& = �̂� (2.3.31b)

�̂� × ∇V𝜓Bi × ∇V𝜓B&i& (2.3.31c)

From vector identities and (2.3.29-30) we can show that (2.3.31) are
identically zero. Thus, we have in gerenral

∫h 𝐸V Bi
8 × 𝐻V B&i&

8 = 𝑑𝑠 = 0 (2.3.32)

Hence, different modes inside the waveguide do not couple.
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Problems

1. Verify (2.1.9) with gradient, divegence and curl in Cartesian
coordinate system.

2. Derive (2.2.7) and (2.2.8).

3. Show that the current sheet 𝐽 = 𝐽8 3𝑥 on the z-plane generates
the plane wave with 𝐸" = −𝜂𝐽8𝑒7-/ $ /2 in an infitinte
homogeneous region.

4. Derive (2.3.2) and express them in Cartesian coordinates.
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Problems

5. Show that For TM mode, we have

𝐸V8 = −
𝑘$
𝜔𝜖

�̂� × 𝐻V8, 𝐻V8 =
𝜔𝜖
𝑘$
�̂� × 𝐸V8

and for TE mode, we have

𝐸V8 = −
𝜔𝜇
𝑘$

�̂� × 𝐻V8, 𝐻V8 =
𝑘$
𝜔𝜇

�̂� × 𝐸V8

6. Show that TEM mode cannot exist in a hollow waveguide with
arbitrary cross section.
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