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1.1 Formulation of Maxwell 
Equations
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1.1.1 Differential and Integral Form

Faraday’s law

∇ × 𝐸 = −𝜕!𝐵 −𝑀 (1.1.1)

Maxwell-Ampere’s Law

∇ × 𝐻 = 𝜕!𝐷 + 𝐽 (1.1.2)

Continuity relation

∇ - 𝐽 = −𝜕!𝜌, ∇ - 𝑀 = −𝜕!𝜚 (1.1.3)

*Lorentz equation of force

�⃑� = 𝑞 𝐸 + �⃑� × 𝐵 (1.1.4) 4



1.1.1 Differential and Integral Form

• 𝐸: electric field intensity (V/m)

• 𝐻: magnetic field intensity (A/m)

• 𝐷: electric flux density (C/m2)

• 𝐵: magnetic flux density (T)

• 𝐽: volumetric electric current density (A/m2)
• 𝜌: electric charge density (C/m3)

• 𝑀: volumetric magnetic current density (V/m2)
• 𝜚: magnetic charge density (Wb/m3)
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1.1.1 Differential and Integral Form

Taking divergence of (1.1.2)

∇ - (∇ × 𝐻) = 𝜕!∇ - 𝐷 + ∇ - 𝐽 ≡ 0 (1.1.5)
And from (1.1.3) we get

𝜕!(∇ - 𝐷 − 𝜌) ≡ 0 (1.1.6)
This implies that

∇ - 𝐷 − 𝜌 = 𝐶(𝑥, 𝑦, 𝑧) (1.1.7)
similarly

∇ - 𝐵 − 𝜚 = 𝐶′(𝑥, 𝑦, 𝑧) (1.1.8)
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1.1.1 Differential and Integral Form

In (1.1.7), if 𝐶 ≠ 0, it can be absorbed into 𝜌. The case is similar to
(1.1.8). Thus, we can set 𝐶 = 𝐶" = 0.
We get the Gauss’s law

∇ - 𝐷 = 𝜌 (1.1.9)

∇ - 𝐵 = 𝜚 (1.1.10)

Note that (1.1.9) and (1.1.10) are not independent of (1.1.1)-(1.1.3).
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1.1.1 Differential and Integral Form

Stokes’ theorem

∫# ∇ × 𝛹 - 𝑑𝑠 = ∮$𝛹 - 𝑑𝑙 (1.1.11)

Divergence theorem

∫% ∇ - 𝛹 𝑑𝑣 = ∮#𝛹 - 𝑑𝑠 (1.1.12)
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1.1.1 Differential and Integral Form

Applying (1.1.11) to (1.1.1) and (1.1.2), we get

∮$ 𝐸 - 𝑑𝑙 = −∫#(𝜕!𝐵 +𝑀) - 𝑑𝑠 (1.1.13)

∮$𝐻 - 𝑑𝑙 = ∫#(𝜕!𝐷 + 𝐽 ) - 𝑑𝑠 (1.1.14)
Applying (1.1.12) to (1.1.3), (1.1.9) and (1.1.10), we get

∮# 𝐽 - 𝑑𝑠 = −𝜕! ∫% 𝜌 𝑑𝑣 (1.1.15)

∮# 𝐽 - 𝑑𝑠 = −𝜕! ∫% 𝜌 𝑑𝑣 (1.1.16)

∮#𝐷 - 𝑑𝑠 = ∫% 𝜌 𝑑𝑣 (1.1.17)

∮#𝐵 - 𝑑𝑠 = ∫% 𝜚 𝑑𝑣 (1.1.18)
9



1.1.1 Differential and Integral Form

Another theorem for the curl operator

∫% ∇ × 𝛹𝑑𝑣 = ∮# G𝑛 × 𝛹 𝑑𝑠 (1.1.19)

Applying (1.1.19) to (1.1.1) and (1.1.2), we get

∮# G𝑛 × 𝐸 𝑑𝑠 =−∫% 𝜕!𝐵 +𝑀 𝑑𝑣 (1.1.20)

∮# G𝑛 × 𝐻 𝑑𝑠 = ∫% 𝜕!𝐷 + 𝐽 𝑑𝑣 (1.1.21) 
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1.1.2 Symmetry and Duality

It is noted that when fictitious magnetic sources 𝜚 and 𝑀 are
introduced, Maxwell equations become symmetric. By exploiting
symmetry, Maxwell equations can be separated into one set
involving only electric sources and another involving only magnetic
sources.

∇ × 𝐸 = −𝜇𝜕!𝐻
∇ × 𝐻 = 𝜖𝜕!𝐸 − 𝐽

∇ - 𝜖𝐸 = 𝜌
∇ - 𝜇𝐻 = 0

&    

∇ × 𝐸 = −𝜇𝜕!𝐻 −𝑀
∇ × 𝐻 = 𝜖𝜕!𝐸
∇ - 𝜖𝐸 = 0
∇ - 𝜇𝐻 = 𝜚

(1.1.22a) & (1.1.22b)
11



1.1.2 Symmetry and Duality

When the following transformations are applied, equations (1.1.22a)
and (1.1.22b) are interchanged:

𝐸 → 𝐻", 𝐻 → −𝐸"

𝐽 → 𝑀", 𝑀 → − 𝐽"
𝜌 → 𝜚", 𝜚 → − 𝜌"
𝜖 → 𝜇", 𝜇 → 𝜖"

(1.1.23)

When applying duality to same medium (𝜂 = 𝜇/𝜖)
𝐸 → 𝜂𝐻", 𝐻 → −𝐸"/𝜂
𝐽 → 𝑀"/𝜂, 𝑀 → −𝜂 𝐽"
𝜌 → 𝜚"/𝜂, 𝜚 → −𝜂𝜌"

(1.1.24)
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1.2 Constitutive Relations
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1.2 Constitutive Relations

Excluding 𝑀 and 𝜚 (non-physical), there are 5 vectors and 1 scalar,
resulting in 16 unknowns.
From (1.1.1)-(1.1.3), there are 7 scalar equations, which means
extra 9 equations are needed to make the system determinate.
The constitutive relations relates𝐷, 𝐵, 𝐽 with 𝐸,𝐻 by

𝐷 = ̿𝐶&(𝐸, 𝜕!𝐸, 𝜕!'𝐸,…𝐻, 𝜕!𝐻, 𝜕!'𝐻,… )
𝐻 = ̿𝐶'(𝐸, 𝜕!𝐸, 𝜕!'𝐸,…𝐻, 𝜕!𝐻, 𝜕!'𝐻,… )
𝐽 = ̿𝐶((𝐸, 𝜕!𝐸, 𝜕!'𝐸,…𝐻, 𝜕!𝐻, 𝜕!'𝐻,… )

(1.2.1)

In general, ̿𝐶) (𝑗 = 1, 2, 3) are tensor functions of time.
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1.2 Constitutive Relations

We confine our exposition on the material properties by the
following restrictions :
• Stationary: ̿𝐶* are not functions of time

• Non-chiral: ̿𝐶+, ̿𝐶, are related to 𝐸 and ̿𝐶- is related to𝐻
• Linear: ̿𝐶* are related to 𝐸 and𝐻 only (no higher derivatives)

Often simplifications can be made if the medium is
• Isotropic: ̿𝐶* are scalars, i.e., 𝐶* (otherwise they are called anisotropic)

• Homogeneous: ̿𝐶* are not functions of space
• In this note, we call a medium simple if it is linear, isotropic and
homogeneous.
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1.2 Constitutive Relations

When a linear dielectric medium is perturbed by an electric field,
the constitutive relation for𝐷 and 𝐸 is

𝐷 = 𝜖*𝐸 + 𝒫 (1.2.2)
𝜖* is the electric permittivity of the vacuum (8.854×10+&' F/m),
and 𝒫 is the electric polarization defined as

𝒫 = �̿�,𝜖*𝐸 (1.2.3)
�̿�, is the electric susceptibility tensor. If the medium is isotropic,
then �̿�, becomes a scalar, and 𝒫 is parallel to 𝐸. We define

𝐷 = ̿𝜖𝐸 (1.2.4)
̿𝜖 = 𝜖*(Y𝐼 + �̿�,) (1.2.5) 16



1.2 Constitutive Relations

Similarly in magnetic medium, we have

𝐵 = 𝜇*𝐻 +ℳ (1.2.6)
𝜇* is the magnetic permeability of the vacuum (4𝜋×10+- H/m), and
ℳ is the magnetic polarization defined as

ℳ = �̿�.𝜇*𝐻 (1.2.7)
where �̿�. is the magnetic susceptibility tensor. We can define

𝐵 = Y𝜇 𝐻 (1.2.8)

Y𝜇 = 𝜇*(Y𝐼 + �̿�.) (1.2.9)
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1.2 Constitutive Relations

The constitutive relation between 𝐽 and 𝐸 is

𝐽 = Y𝜎 𝐸 (1.2.10)
Y𝜎 is the conductivity of the medium. The conductivity in vacuum
is 0 (S/m).
For a simple medium, we can simplify the tensors ̿𝜖, Y𝜇 and Y𝜎 to 𝜖, 𝜇
and 𝜎, respectively. (1.1.1) and (1.1.2) can be rewritten as

∇ × 𝐸 = −𝜇𝜕!𝐻 (1.2.11)

∇ × 𝐻 = (𝜎 + 𝜖𝜕!)𝐸 (1.2.12)
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1.3 Matching Conditions
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1.3 Matching Conditions

To derive boundary conditions, integral form of Maxwell equations
are needed.
Applying (1.1.20) to the pillbox

G𝑛 × 𝐸& − 𝐸' ∆𝑆 + ∫/01, �̂� × 𝐸 𝑑𝑠 =−∆𝑆 ∫+2/'
2/' (𝜕!𝐵 +𝑀)𝑑𝜁 (1.3.1)

when ℎ → 0, we define the surface magnetic current density (V/m)
as

𝑀/ = lim
2→*

∫+2/'
2/' 𝑀𝑑𝜁 (1.3.2)
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1.3 Matching Conditions

we get
G𝑛 × 𝐸& − 𝐸' = −𝑀/ (1.3.3)

Similarly, applying (1.1.21) to the pillbox, when ℎ → 0, we define the
surface electric current density (A/m) as

𝐽/ = lim
2→*

∫+2/'
2/' 𝐽𝑑𝜁 (1.3.4)

we get

G𝑛 × 𝐻& −𝐻' = 𝐽/ (1.3.5)
Note that 𝐽/ exists only when one of the medium’s 𝜎 → ∞ (PEC).
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1.3 Matching Conditions

Applying (1.1.17) to the pillbox

G𝑛 - 𝐷& − 𝐷' ∆𝑆 + ∫/01, ̂t - 𝐷 𝑑𝑠 = ∆𝑆 ∫+2/'
2/' 𝜌𝑑𝜁 (1.3.6)

when ℎ → 0, we define the surface charge density (C/m2) as

𝜌/ = lim
2→*

∫+2/'
2/' 𝜌𝑑𝜁 (1.3.7)

we get
G𝑛 - 𝐷& − 𝐷' = 𝜌/ (1.3.8)

Similarly, from (1.1.18) we get

G𝑛 - 𝐵& − 𝐵' = 𝜚/ (1.3.9)
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1.3 Matching Conditions

Lastly, applying (1.1.15) to the pillbox

G𝑛 - 𝐽& − 𝐽' ∆𝑆 + ∫/01, �̂� - 𝐽 𝑑𝑠 = −∆𝑆 ∫+2/'
2/' 𝜕!𝜌𝑑𝜁 (1.3.10)

when ℎ → 0, we can express the side integral as

∮$! lim2→* ∫+2/'
2/' 𝐽𝑑𝜁 - �̂�𝑑𝑙 = ∮$! 𝐽/ - �̂�𝑑𝑙 = ∫5! ∇/ - 𝐽/ 𝑑𝑠 (1.3.11)

we get
𝐽& − 𝐽' + ∇/ - 𝐽/ = −𝜕𝑡𝜌𝑠 (1.3.12)

Similarly, from (1.1.16), we get

𝑀& −𝑀' + ∇/ - 𝑀/ = −𝜕𝑡𝜌𝑠 (1.3.13)
23



1.3 Matching Conditions

Special conditions arise when one of the media is a perfect electric
conductor (PEC) or a perfect magnetic conductor (PMC). Inside a
perfect conductor, electromagnetic fields vanish.
For an interface between two lossless dielectrics, the boundary
conditions have no source terms.
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1.4 Wave Equations
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1.4 Wave Equations

Consider a lossless simple medium, taking the curl of (1.1.1)

∇ × ∇ × 𝐸 = ∇ ∇ - 𝐸 − ∇'𝐸 = −𝜕! ∇ × 𝜇𝐻 (1.4.1)

∇'𝐸 − 𝜇𝜖𝜕!'𝐸 = 𝜇𝜕! 𝐽 + ∇ 𝜌/𝜖 + ∇ ×𝑀 (1.4.2)

(1.4.2) is the wave equation for electric field. We can obtain the
wave equation for magnetic field by applying the duality transform
(1.1.24) to (1.4.2)

∇'𝐻 − 𝜇𝜖𝜕!'𝐻 = −∇ × 𝐽 + ∇ 𝜚/𝜇 + 𝜖𝜕!𝑀 (1.4.3)
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1.4 Wave Equations

(1.4.2) and (1.4.3) form a set of coupled inhomogeneous DE

☐ 6
7 =

89! : ; ∇ "
# ; ∇ × >

+∇ × : ; ∇ $
% ; ?9!>

(1.4.4)

☐ ≡ ∇' − 𝑣+'𝜕!' is the d'Alembert operator with 𝑣 = 𝜇𝜖 +&/'. In
source-free regions, we have

☐ 6
7 = 0 (1.4.5)
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1.5 Time Harmonic Form

28



1.5 Time Harmonic Form

A time domain signal can be decomposed into a spectrum of time
harmonic components

𝑓 𝑡 = &
'@ ∫+A

A 𝑔(𝜔)𝑒0B!𝑑𝜔 (1.5.1)

with

𝑔(𝜔) = ∫+A
A 𝑓 𝑡 𝑒+0B!𝑑𝜔 (1.5.2)

The Fourier and inverse Fourier transform relationship is
𝑔 𝜔 = 𝔉 𝑓 𝑡
𝑓 𝑡 = 𝔉+& 𝑔 𝜔 (1.5.3)
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1.5 Time Harmonic Form

Now we consider the harmonic electric field at angular frequency 𝜔.
We consider its phasor form

𝐸 𝑟, 𝑡 = ℜ 𝐸 𝑟, 𝜔 𝑒0B! (1.5.4)
Note that we use the same notation for both the time domain field
and frequency domain field, and we will suppress its dependency
when there is no ambiguity.

In general, the phasor field 𝐸 𝑟, 𝜔 is a complex number.
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1.5 Time Harmonic Form

The time harmonic Maxwell’s equation takes the form

∇ × 𝐸 = −𝑖𝜔𝐵 −𝑀 (1.5.5)

∇ × 𝐻 = 𝑖𝜔𝐷 + 𝐽 (1.5.6)

∇ - 𝐷 = 𝜌 (1.5.7)

∇ - 𝐵 = 𝜚 (1.5.8)
The method to translate the time-domain equation to frequency
domain is to replace 𝜕! with 𝑖𝜔, and vice versa.
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1.5 Time Harmonic Form

Analyzing (1.5.6), with𝐷 = 𝜖𝐸 and 𝐽 = 𝐽C + 𝐽0 = 𝜎𝐸 + 𝐽0, we get

∇ × 𝐻 = 𝑖𝜔 𝜖 − 𝑖 D
B
𝐸 + 𝐽0 (1.5.9)

We define the complex permittivity as

𝜖C = 𝜖 − 𝑖 D
B
= 𝜖" − 𝑖 𝜖"", 𝜖", 𝜖"" ∈ ℝ (1.5.10)

In general 𝜖 = 𝜖E − 𝑖𝜖F. We define the loss tangent of the medium
as

tan 𝛿 = ?&&

?&
= ?'

?(
+ D

B?(
(1.5.11)

Medium with tan 𝛿 ≪ 1 is characterized as good dielectric, and with
tan 𝛿 ≫ 1 is characterized as good conductor. 32



1.5 Time Harmonic Form

The curl part of Maxwell’s equations can be further simplified as

∇ × 𝐸 = −𝒵𝐻 −𝑀0 (1.5.12)

∇ × 𝐻 = 𝒴𝐸 + 𝐽0 (1.5.13)

with
𝒵 = 𝑖𝜔𝜇 (1.5.13)
𝒴 = 𝑖𝜔𝜖C (1.5.14)

𝒵𝐻 has the same unit of 𝑀0 and 𝒴𝐸 has the same unit of 𝐽0. In this
representation, the impressed currents are separated from the
induced ones.
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1.5 Time Harmonic Form

The d'Alembert operator in (1.4.4) in frequency domain becomes

∇' − 0B )

&/8?*
= ∇' + 𝑘' (1.5.15)

where
𝑘 = 𝜔 𝜇𝜖C = 𝑘E + 𝑖𝑘F (1.5.16)

is the wavenumber. The square root of 𝜖C is chosen so that 𝑘F
relates to the physical attenuation of the wave propagation.
Several literatures use 𝛾' = 𝛼 + 𝑖𝛽 ' = −𝜔'𝜇𝜖C = −𝑘' . The
relationship between the real and imaginary parts are 𝛼 = −𝑘F and
𝛽 = 𝑘E. Thus 𝑘 = 𝛽 − 𝑖𝛼 and 𝛾 = 𝑖𝑘.
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1.5 Time Harmonic Form

In a source-free region, Maxwell equations reduce to wave
equations for the electric and magnetic field components. Each
Cartesian component of the fields satisfies the homogeneous
Helmholtz equation

∇'𝜓 + 𝑘'𝜓 = 0 (1.5.17)
In cylindrical and spherical coordinates, the field components are
generally coupled and described by vector wave equations, except
in separable cases where they can still satisfy the scalar Helmholtz
equation.
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1.6 Fundamental Properties
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1.6.1 Poynting Theorem

Considering the identity

∇ - 𝐸 × 𝐻 ≡ 𝐻 - ∇ × 𝐸 − 𝐸 - ∇ × 𝐻 (1.6.1)

We define the instantaneous Poynting vector 𝑆 = 𝐸 × 𝐻 (W/m2)

∇ - 𝑆 = 𝐻 - −𝜕!𝐵 −𝑀 − 𝐸 - 𝜕!𝐷 + 𝐽 =

−𝜕!
8
'
𝐻 - 𝐻 − 𝜕!

?
'
𝐸 - 𝐸 − 𝐻 - 𝑀 − 𝐸 - 𝐽 (1.6.2)
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1.6.1 Poynting Theorem

The term ?
'
𝐸 - 𝐸 = 𝑤, and 8

'
𝐻 - 𝐻 = 𝑤. denote the electric and

magnetic energy density, and 𝐻 - 𝑀 + 𝐸 - 𝐽 = 𝑝G denotes the power
loss/supply per unit volume. We rewrite the Poynting theorem as

∇ - 𝑆 = −𝜕! 𝑤, +𝑤. − 𝑝G (1.6.3)
and conduct integration over a finite volume 𝑉 by applying the
divergence theorem:

∮# G𝑛 - 𝑆𝑑𝑠 = −𝜕! ∫% 𝑤, +𝑤. 𝑑𝑣 − ∫% 𝑝G𝑑𝑣 (1.6.4)
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1.6.1 Poynting Theorem

From 𝐸 𝑟, 𝑡 = ℜ 𝐸 𝑟 𝑒0B! = 𝐸 𝑟 𝑒0B! + 𝐸∗ 𝑟 𝑒+0B! /2, and

𝑆 𝑟, 𝑡 = ℜ 𝐸 𝑟 × 𝐻∗ 𝑟 + ℜ 𝐸 𝑟 ×𝐻 𝑟 𝑒0'B! /2 (1.6.5)
we have

𝑆IJ =
&
K ∫*

K 𝐸 𝑟, 𝑡 × 𝐻 𝑟, 𝑡 𝑑𝑡 = &
'
ℜ 𝐸 × 𝐻∗ = ℜ 𝑆 (1.6.6)

where

𝑆 = &
'
𝐸 × 𝐻∗ (1.6.7)

is defined as the complex Poynting vector.
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1.6.1 Poynting Theorem

From the identity (1.6.1)

∇ ⋅ 𝑆 = ∇ ⋅
𝐸 × 𝐻∗

2
= −𝑖2𝜔

𝜇 𝐻
'

4
−
𝜖 𝐸

'

4
−
𝐸 ⋅ 𝐽∗

2
−
𝐻∗ ⋅ 𝑀
2

=

−𝑖2𝜔 𝑤. −𝑤, − 𝑝G (1.6.8)

is the complex Poynting theorem, where 𝑤. = 𝜇 𝐻
'
/4, 𝑤, =

𝜖 𝐸
'
/4 and 𝑝G = 𝐸 ⋅ 𝐽∗ +𝐻∗ ⋅ 𝑀 /2 are the time average electric

and magnetic energy density and the time average power
loss/supply.
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1.6.2 Uniqueness Theorem

In a volume 𝑉, there exists sources 𝐽 and𝑀. Assume the medium is
simple but may be lossy, i.e, 𝜀, 𝜇 are in gerneral complex. Our goal
is to determine the conditions such that the electromagnetic field
inside the volume 𝑉 is unique.

Suppose there are two sets of solutions exist in 𝑉, say, 𝐸&, 𝐻& and
𝐸', 𝐻' . We want to find the conditions for 𝛿𝐸 = 𝐸& − 𝐸' = 0 and
𝛿𝐻 = 𝐻& −𝐻' = 0 inside 𝑉.
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1.6.2 Uniqueness Theorem

From (1.5.5) and (1.5.6), we have

�∇ × 𝐸& = −𝑖𝜔𝜇𝐻& −𝑀
∇ × 𝐻& = 𝑖𝜔𝜀𝐸& + 𝐽

, �∇ × 𝐸' = −𝑖𝜔𝜇𝐻' −𝑀
∇ × 𝐻' = 𝑖𝜔𝜀𝐸' + 𝐽

(16.9)

inside 𝑉. Substracting the two sets of equations, we get

�∇ × 𝛿𝐸 = −𝑖𝜔𝜇𝛿𝐻
∇ × 𝛿𝐻 = 𝑖𝜔𝜀𝛿𝐸

(1.6.10)
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1.6.2 Uniqueness Theorem

Dot the first equation in (1.6.10) with 𝛿𝐻∗ and the second equation
with 𝛿𝐸∗, and substract the two:

∇ × 𝛿𝐸 - 𝛿𝐻∗ − ∇ × 𝛿𝐻 - 𝛿𝐸∗ = ∇ - 𝛿𝐸 ×𝛿𝐻∗

= 𝑖𝜔 𝜇 𝛿𝐻
'
− 𝜀∗ 𝛿𝐸

'
(1.6.11)

Conducting integration of (1.6.11) over 𝑉

∮# 𝛿𝐸 ×𝛿𝐻
∗ - 𝑑𝑠 = ∫% 𝑖𝜔 𝜇 𝛿𝐻

'
− 𝜀∗ 𝛿𝐸

'
𝑑𝑣 (1.6.12)
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1.6.2 Uniqueness Theorem

The key point is, if the surface integral in (1.6.12) equals to zero, so
does the volume integral, which implies

�
∫% ℜ 𝜇 𝛿𝐻

'
−ℜ 𝜀 𝛿𝐸

'
𝑑𝑣 = 0

∫% ℑ 𝜇 𝛿𝐻
'
+ ℑ 𝜀 𝛿𝐸

'
𝑑𝑣 = 0

(1.6.13)

For disipative media, both ℑ 𝜀 and ℑ 𝜇 < 0, implying 𝛿𝐸 = 𝛿𝐻 =
0 everywhere inside 𝑉.
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1.6.2 Uniqueness Theorem

For the surface integral in (1.6.12) to be zero, that is,

∮# 𝛿𝐸 × 𝛿𝐻
∗ - 𝑑𝑠 = ∮# G𝑛 × 𝛿𝐸 - 𝛿𝐻

∗𝑑𝑠 = ∮# 𝛿𝐻
∗× G𝑛 - 𝛿𝐸𝑑𝑠 = 0

(1.6.14)
The possible conditions are:

i. tangential 𝐸 on 𝑆 is specified, i.e., G𝑛 × 𝛿𝐸 = 0, or

ii. tangential𝐻 on 𝑆 is specified, i.e., G𝑛 × 𝛿𝐻 = 0, or

iii. tangential 𝐸 is specified over part of 𝑆, and tangential 𝐻 is
specified the rest of 𝑆.
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1.6.2 Uniqueness Theorem

Uniqueness is established for general lossy media. For lossless
media, from the first equation in (1.6.13) shows that there can exist
infinite resonant solutions if the electric field energy stored inside
𝑉 is equal to the magnetic field energy.
The principle extends to non-homogeneous media by applying it
locally to small homogeneous regions. The method is limited to
linear media.
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1.6.3 Reciprocity Theorem

Suppose we have a set of sources 𝐽&, 𝑀& which generate the
electromagnetic field 𝐸&, 𝐻& . In the same medium, another set of
sources 𝐽', 𝑀' generate the electromagnetic field 𝐸', 𝐻' .
We define the reaction of field 1 on source 2 and the reaction of
field 2 on source 1 as

1, 2 = ∫% 𝐸& - 𝐽' −𝐻& - 𝑀' 𝑑𝑣 (1.6.15a)

2, 1 = ∫% 𝐸' - 𝐽& −𝐻' - 𝑀& 𝑑𝑣 (1.6.15b)

We are finding the relation between 1, 2 and 2, 1 .
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1.6.3 Reciprocity Theorem

From (1.5.12) and (1.5.13) we can get the following set of eqautions

∇ × 𝐸& = −𝒵𝐻& −𝑀& (1.6.16a)

∇ × 𝐻& = 𝒴𝐸& + 𝐽& (1. 6.16b)

∇ × 𝐸' = −𝒵𝐻' −𝑀' (1.6.16c)

∇ × 𝐻' = 𝒴𝐸' + 𝐽' (1. 6.16d)

Subtract (1.6.16a) dot𝐻' with (1.6.16d) dot 𝐸&:
−∇ - 𝐸& × 𝐻' = 𝒵𝐻& - 𝐻' +𝐻' - 𝑀& +𝒴𝐸& - 𝐸' + 𝐸& - 𝐽'

(1.6.17a)
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1.6.3 Reciprocity Theorem

Interchanging 1 and 2 in (1.6.17a) and we get
−∇ - 𝐸' × 𝐻& = 𝒵𝐻& - 𝐻' +𝐻& - 𝑀' +𝒴𝐸& - 𝐸' + 𝐸' - 𝐽&

(1.6.17b)
Then subtract (1.6.17a) with (1.6.17b)
∇ - 𝐸' × 𝐻& − 𝐸& × 𝐻' = 𝐸& - 𝐽' −𝐻& - 𝑀' − 𝐸' - 𝐽& −𝐻' - 𝑀&

(1.6.18)
This is the Lorentz reciprocity theorem in differential form.
Integrating (1.6.18) and we obtain the integral form

∮# 𝐸' × 𝐻& − 𝐸& × 𝐻' - 𝑑𝑠 = 1, 2 − 2, 1 (1.6.19)
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1.6.3 Reciprocity Theorem

Extend 𝑆 to infinity, we get the Rayleigh-Carson reciprocity theorem
1, 2 = 2, 1 (1.6.20)

For a source-free region, we have

∮/ 𝐸' × 𝐻& − 𝐸& × 𝐻' - 𝑑𝑠 = 0 (1.6.21)

For example, if 𝐸&, 𝐻& and 𝐸', 𝐻' represent two different modes
in a section of a hollow waveguide. These electromagnetic field
pairs must satisfy equation (1.6.21).
Our derivation assumes a simple medium but applies to general
media, excluding nonreciprocal anisotropic materials with a
nonsymmetric tensor.
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1.6.3 Reciprocity Theorem

As an corollary, we can prove that electric current sources located
on PEC do not radiate by Rayleigh-Carson reciprocity theorem.

Assume a source current 𝐽& is placed on a PEC, and there exists an
abitrary source 𝐽' = 𝐼𝑑𝑙 G𝑎 outside the PEC. Form the reciprocity
theorem, we have

1, 2 = �
%
𝐸& - 𝐽'𝑑𝑣 = 𝐼𝑑𝑙𝐸& 𝑟 - G𝑎 = 2, 1 = �

%
𝐸' - 𝐽&𝑑𝑣 = 0

(1.6.22)
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1.6.3 Reciprocity Theorem

The last equality holds because that 𝐸' generated by 𝐽' should
satisfy the boundary condition that the tangential componet of 𝐸'
on the PEC is equal to zero. From (1.6.22), we have 𝐸& 𝑟 - G𝑎 = 0.
Since 𝑟 and G𝑎 are arbitrry, we cen deduce that 𝐸& = 0 everywhere,
indicating that when an electric current element is placed
tangentially on a conductor's surface, it does not radiate.
A similar proof applies when a magnetic current is placed on a
PMC, showing that it does not radiate.
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1.6.4 Equivalence Principle

The equivalence principle states that the fields outside a given
region can be replicated by appropriate equivalent sources,
replacing the actual sources inside.
The equivalence principle has multiple forms. We will first discuss
the volume equivalence principle, followed by the surface
equivalence principle.
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1.6.4 Equivalence Principle

A. Volume Equivalence Principle
Conisder sources 𝐽,𝑀 radiate in vacuum

�∇ × 𝐸* = −𝑖𝜔𝜇*𝐻* −𝑀
∇ × 𝐻*= 𝑖𝜔𝜖*𝐸* + 𝐽

(1.6.23)

And also consider the fields when obstacles are presented

�∇ × 𝐸 = −𝑖𝜔𝜇𝐻 −𝑀
∇ × 𝐻 = 𝑖𝜔𝜖𝐸 + 𝐽

(1.6.24)
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1.6.4 Equivalence Principle

Substracting (1.6.24) with (1.6.23), we get the equations for the
scattered field

�
∇ × 𝐸 − 𝐸* = ∇ × 𝐸/ = −𝑖𝜔 𝜇𝐻 − 𝜇*𝐻*
∇ × 𝐻 − 𝐻* = ∇ × 𝐻/= 𝑖𝜔 𝜖𝐸 − 𝜖*𝐸*

(1.6.25)

With further simplification

�
∇ × 𝐸/ = −𝑖𝜔𝜇*𝐻/ −𝑀,L

∇ × 𝐻/= 𝑖𝜔𝜖*𝐸/ + 𝐽,L
(1.6.26)
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1.6.4 Equivalence Principle

where

�
𝑀,L = 𝑖𝜔 𝜇 − 𝜇* 𝐻
𝐽,L = 𝑖𝜔 𝜖 − 𝜖* 𝐸

(1.6.27)

are the equivalent volume currents. Noted that the equivalent
volume currents have non-zero value only when 𝜇 ≠ 𝜇* or 𝜖 ≠ 𝜖* ,
that is, the position of the obstacle.
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1.6.4 Equivalence Principle

B. Surface Equiavalence Principle
The following figure is a geneal depiction of surface equivalence
principle. If we are only interested in the fields in 𝑉&, we can replace
the sources in 𝑉' with equivalent surface currents on the boundary.
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1.6.4 Equivalence Principle

From the matching conditions (1.3.3) and (1.3.5), the sources in 𝑉'
are replaced by surface currents on the boundary with

�
𝐽/ = G𝑛 × 𝐻& −𝐻'"

𝑀/ = −G𝑛 × 𝐸& − 𝐸'"
(1.6.28)

Three special cases are considered:

i. The first is simply setting 𝐸'" , 𝐻'" to zero, then we get

� 𝐽/ = G𝑛 × 𝐻&
𝑀/ = −G𝑛 × 𝐸&

(1.6.29a)
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1.6.4 Equivalence Principle

ii. Further set 𝑉' as PEC, as we have shown in sectyion 1.6.3 that
electric surface currents do not radiate on PEC, we get

� 𝐽/ = 0
𝑀/ = −G𝑛 × 𝐸&

(1.6.29b)

iii. Or, further set 𝑉' as PMC, since that magnetic surface currents
do not radiate on PMC, we get

� 𝐽/ = G𝑛 × 𝐻&
𝑀/ = 0

(1.6.29c)
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Problems

1. Show (1.1.18) by using the divergence theorem.

2. Show that −�̂� × �̂� × 𝑢 = �𝜃 �𝜃 - 𝑢 + �𝜙 �𝜙 - 𝑢 = �𝜃 �𝜃 + �𝜙 �𝜙 - 𝑢
where 𝑢 is an arbitrary vector. We use the dyadic notation in the
last expression.

3. Show that ∇ &
E
= −∇" &

E
= − E

E+
with 𝑅 = 𝑟 − 𝑟′ and 𝑅 = 𝑅. ∇

denotes operation with respect to 𝑟, and ∇" denotes operation
with respect to 𝑟′.
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Problems

4. Show that ∇ - E
E+

= −∇' &
E
= 4𝜋𝛿 𝑅 with 𝑅 = 𝑟 − 𝑟′ .

5. Consider the vector Helmholtz quation ∇' + 𝑘' 𝐸 = 0 .
Suppose ∇ - 𝐸 = 0, show that 𝐸 = ∇ × 𝜓𝑢 is a solution with 𝑢
being a constant vector and 𝜓 satisfies the scalar Helmholtz
equation (1.5.17).

6. Show that with inhonogenous 𝜖 𝑟 , in source-free region the

electric field satisfies the equation ∇' + 𝑘' 𝐸 = −∇ 𝐸 - ∇?
?

.
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